簡易檢索 / 詳目顯示

研究生: 李孟龍
Meng-Lung Li
論文名稱: 動態光罩快速原型系統製造組織工程支架之研發
Development of Dynamic Mask Rapid Prototyping System for Tissue Engineering Scaffolds
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 謝明發
Ming-Fa Hsieh
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 快速原型動態光罩數位微鏡晶片
外文關鍵詞: Rapid Prototyping, Dynamic Mask, Digital Micro-mirror Device
相關次數: 點閱:346下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織支架於傳統的製造方法上,存在於孔洞不易控制、特定形狀難以製作、冗長的時間等問題;然而快速原型(Rapid Prototyping)技術提供一個製作3D支架的方法,以層加工堆疊成型,可有效地解決傳統上的製作問題。
    本研究研發一套生醫動態光罩快速成型系統(Dynamic Mask Rapid Prototyping System)用於製作生物支架,動態光罩產生器是拆解DLP (Digital Light Processing)投影機利用內部的控制模組來啟動數位微鏡(Digital Micro-mirror Device, DMD)晶片,選擇波長365nm之紫外光代替DLP投影機的可見光源,並於自行開發的軟體上產生每層的光罩圖案,配合投影與成像光學設計,將光罩圖案經UV光反射而轉移到光聚合生醫材料上;Z軸以步進馬達自動控制加工層厚,如此一層一層的堆疊出每個切層平面,則系統可製作出0/90度直交結構和60/120度交錯結構的多孔支架。
    PEG-HEMA型光交聯劑可受UV光激發而發生交聯反應,混入85/15 PLGA可改善其親水性。以差式熱分析(Differential Scanning Calorimeter, DSC)選定光聚合生醫材料的比例,結果決定PEG-HEMA濃度依40%的重量百分比來調配。
    多孔性薄膜以MG63類骨母細胞(human osteoblast-like cell)進行體外培養3週之後,在SEM觀察下可看出細胞貼附且生長成團的現象;含水率檢測,發現40%PEG-HEMA/20% PLGA比40%PEG-HEMA /40% PLGA的含水率更好;ph值測試,每3天更換一次PBS溶液,其ph值的變化在7~7.4之間,仍適合細胞的生長。


    Traditional methods to generate tissue engineering scaffold have encountered issues such as limited control of pore-size, restricted geometric shapes, and long fabrication periods. Layered manufacturing techniques, also known as Rapid Prototyping (RP) processes, provide a great opportunity to fabricating 3D scaffolds without above problems.
    In this research, a Dynamic Mask Rapid Prototyping system was developed to cure UV-curable biodegradable material to generate scaffold. The Digital Micro-mirror Device (DMD), disassembled from a Digital Light Processing (DLP) projector, was used as a dynamic mask generator. Instead of using visible light in DLP, UV light source is selected in the system. The mask pattern for each layer is controlled by self-developed software. Through the suitable optical design, the UV light reflected by DMD, was focused to cure the biodegradable material. A stepping motor was used to control the z-axis, the layer thickness, automatically. Scaffolds with 0/90∘square pores and 60/120∘staggered pores were fabricated by this system.
    The biodegradable material exploited in this study is 85/15PLGA, and the PEG-HEMA polymer, which can be excited by UV light to cause cross-linking reaction, is added as the agent of cross-linking. PEG-HEMA polymer can also improve the hydrophile of PLGA. The suitable composition of PEG-HEMA polymer, which is 40%, was determined by Differential Scanning Calorimeter (DSC). MG63 human osteoblast-like cells were cultured on porous membrane in vitro. Throughout the 3 weeks of culture, cells growth morphology was observed under SEM. The scaffold made of 40% PEG-HEMA/20%PLGA has better water absorption ratio than that made of 40%PEG-HEMA/40%PLGA. The test of pH value was 7 to 7.4 with PBS being changed every 3 days, which is considered suitable for cells culture.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1. 2 研究目的和方法 2 1. 3 論文撰寫架構 3 第二章 文獻探討 4 2.1 組織工程(Tissue Engineering) 4 2.1.1支架材料之特性 6 2.1.2高分子生醫材料 7 2.1.3一般支架製備方法 10 2.2 快速原型技術( Rapid Prototyping, RP ) 15 2.2.1快速成型系統分類 15 2.2.2快速原型加工原理 16 2.2.3 動態光罩技術 16 2.2.4應用快速原型技術製造組織工程之支架 19 第三章 動態光罩控制軟體 25 3.1光罩輪廓資料之輸入與處理 25 3.2 動態光罩圖案的產生 27 第四章 生醫動態光罩快速成型系統 30 4.1生醫動態光罩快速成型系統之加工原理 30 4.2 動態光罩產生器 31 4.3 選擇曝光光源 38 4.4系統成像設計 41 4.5 機構設計 46 4.6運動控制系統與人機介面開發 48 第五章 實驗方法與結果 54 5.1實驗藥品與設備 54 5.2光聚合生醫材料 56 5.3 成型系統加工 61 5.3.1加工參數設定 62 5.3.2多孔性支架製作 64 5.4 孔洞大小的量測 68 5.5細胞的培養及生長 70 5.5.1 骨母細胞之培養 71 5.5.2細胞之生長情況 73 5.6 支架性質檢測 75 5.6.1 含水比率測試 75 5.6.2 ph值測試 76 第六章 結論與建議 78 6.1 結論 78 6.2 與文獻比較 79 6.3 建議 80 參考文獻 82

    1.李宣書,”淺談組織工程”,物理雙月刊(二十四卷三期),2001年6月。
    2.Background on Tissue Engineering,( http://www-2.cs.cmu.edu/People/tissue/ tutorial.html)
    3.張根源,”組織工程技術與應用”,化工科技與商情第33期。
    4.楊婷琪,”組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。
    5.Shoufeng Yang et al., “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors”, Tissue Engineering, Volume 7, Number 6,2001,679-689.
    6.俞耀庭,生物醫用材料,初版,新文京,2004。
    7.D.K. Gilding A.M. Reed, “Biodegradable polymers for use in surgery-Poly (glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation. ” , Polymers.22:494,1981.
    8.工業技術研究院, (http://www.itri.org.tw/)
    9.張根源,”生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112期,民國90年2月。
    10.興技生物科技公司, (http://www.bio-invigor.com)
    11.蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
    12.Dumitriu S., ”Medical application of synthetic polymers”, Marcel Dekker, New York, pp 725,1994.
    13.J.M. Taboas et al., “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds”, Biomaterials 24 (2003) 181-194.
    14.Whang, K., Thomas, C. K. et al., “A novel method to fabricate bioabsorbable scaffolds”, Polymer 36, 1995, 837-842.
    15.Si-Nae Park et al. , “Characterization of porous collagen/hyaluronic acid scaffold modified by 1-eyhyl-3-(3-dimethylaminopropyl) carbodiimide”, Biomaterials, 23 , 2002,1205-1212.
    16.Markus S. Widmer et al, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration”, Biomaterials 19(1998), 1945-1955.
    17.Kwangsok Kim et al, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications”, Biomaterials 24(2003), 4977-4985.
    18.Guobao Wei and Peter X. Ma, “Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering”, Biomaterials 25(2004), 4749-4757.
    19.Ch. Schugens et al., “Polylactide macroporous biodegradable implants for cell transplantation. Ⅱ. Preparation of polylactide foams by liquid-liquid phase separation”, J. Biome Mater Res. 30: 449-461(1996).
    20.鄭正元,“電腦輔助設計技術參考手冊---快速原型加工”,國立台灣工業技術學院機械工程技術系,1997。
    21.Bertsch A. et al., “Rapid Prototyping of small size objects”, Rapid Prototyping Journal, V6, N4, 2000, pp.259-266.
    22.Envisiontec, (http://www.envisiontec.de/)
    23.J.Stampfl et al., “Water Soluble, Photocurable Resins for Rapid Prototyping Application”, Macromol. Symp, 2004, 217, 99-107.
    24.Major RP Techologies, (http://www.uni.edu/~rao/rt/major_tech.htm)
    25.Iwan Zein et al., ”Fused deposition modeling of novel scaffold architecture for tissue engineering application”, Biomaterials 23 (2002), 1169-1185.
    26.Samar Jyoti Kalita et al. “Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling”, Materials Science and Engineering C 23 (2003) 611-62.
    27.黃台生譯,Chua C. K. and Leong K. F.著,“快速原型-原理與製造上的應用”,六合出版社,中華民國八十七年六月。
    28.Distribuidores Autorizados de Impresoras 3D Zcorporation, (http://tecsol3d.com/ zcorp/)
    29.C.X.F. Lam et al. “Scaffold development using 3D printi ng with a starch-based polymer”, Materials Science and Engineering C 20 (2002) 49-56.
    30.Zhuo Xiong et al. “Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via precise extrusion”, Scripta materialia 45 773 779 (2001).
    31.T.H. Ang et al. “Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system”, Materials Science and Engineering C 20 (2002) 35-42.
    32.陳徹工作室 編著,“Visual Basic 6 程式設計實務入門”,文魁資訊公司,200年七月。
    33.TEXAS INSTRUMENTS, (http://www.ti.com)
    34.DLP™技術概要,德州儀器亞洲區DLP事業部門,元件科技2003年9月號。
    35.L.J Hornbeck, “Deformable-Mirror Spatial Light Modulators,” Spatial Light Modulators and Application III SPIE Critical Reviews,Vol. 1150, pp.86-102 (August 1989)
    36.PLUS Vision Corp.,(http://www.plus-vision.com/en/)
    37.松下電工Machine&Vision株式會社,(http://naismv.com/t/)
    38.Fused Silica (FS),(http://www.sciner.com/Opticsland/FS.htm)
    39.許端容,”具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004。
    40.楊寶旺譯,”有機化學”,第五版,東華書局。

    無法下載圖示 全文公開日期 2006/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE