簡易檢索 / 詳目顯示

研究生: 廖士誠
Shih-Cheng Liao
論文名稱: 機械手臂應用於螺絲裝配任務之研究
A Study of Robot Arm for Screw Assembly Tasks
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 鄧惟中
Wei-Chung Teng
溫哲彥
none
彭勝宏
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 機械手臂阻抗控制螺絲裝配策略拴緊扭力
外文關鍵詞: Robot arm, Impedance control, Screw assembly strategy, Fastening torque
相關次數: 點閱:171下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在產業全球化與人口結構演變趨勢下,擴大並深化了工業機械手臂的在各產業應用範疇,所要面對的任務也越加的多樣化,如精密組裝、拋光、電子零件製程應用,單純的位置命令控制機械手臂已經不能滿足以上的任務。
為了使機械手臂能在位置控制模式下,執行精密組裝任務,本研究提出以位置命令為基礎阻抗控制搭配裝配控制策略來進行螺絲裝配,採用阻抗控制讓機械手臂終端效果器具有虛擬的質量、彈簧、阻尼,使得終端效果器在未知的環境下,依據力量/力矩感測器量測到與外界環境的接觸力/力矩資訊,並經過力量/力矩座標系轉換法,將感測器所量測到資訊轉換到終端效果器,使機械手臂能夠順利完成任務。
本研究以終端效果器,夾取螺絲裝配組件,應用以位置命令為基礎之阻抗控制,搭配螺絲裝配控制策略,以便螺絲裝配任務能夠順利完成。首先驗證力量/力矩座標系轉換的必要性,再實現以位置命令為基礎之阻抗控制,搭配螺絲裝配控制策略進行裝配任務。我們使用兩種公制(M8、M6)螺絲,分別進行三種不同拴緊扭力的裝配任務,以實現此控制方法的穩定性。


The universal popularity of industrial manipulators in a variety of industries can be observed due to the globalization of industries and the evolution of demographic structure. Following these dramatic changes, tasks, such as precision assembly, polishing and application of electronic components, which manipulators need to deal with in the future are becoming much more diversified. Position command-controlled robots in the past, therefore, can no longer achieve the tasks mentioned above.
A position command-based impedance control with a assembly control strategy for implementation of screw assembly is exemplified in this thesis to present manipulators conducting precision assembly in position control mode. The use of impedance control equips the end effector on the manipulator with virtual mass, spring and damper, which enables the manipulator to complete the tasks in the unknown environments with the help of the end effector acquiring the measured data from the force/torque sensor and the contact force/torque of the exterior environments through the transformation of coordinate frame.
The experiment in this thesis demonstrates how an end effector holds a screw component in the use of position command-based impedance control and screw assembly strategy to achieve the assembly task. Firstly, the necessity of the transformation of coordinate frame of the force/torque is to be proven and secondly the assembly task is to be implemented with position command-based impedance control and screw assembly strategy. Two types of screws (M8 and M6) are chosen in three separate tasks of different fastening torque to represent the abovementioned control method.

中文摘要I AbstractII 誌謝IV 目錄V 圖目錄VII 表目錄XI 第一章緒論1 1.1前言1 1.2文獻回顧2 1.3研究動機與目的5 第二章研究方法6 2.1以關節位置命令為基礎之阻抗控制6 2.2力量/力矩轉換10 2.3螺絲裝配控制策略12 2.4軌跡規劃16 第三章機械手臂運動學分析19 3.1機械手臂運動學分析19 3.2Denavit-Hartenberg 參數法20 3.3正向運動學23 3.4反向運動學27 第四章實驗結果與討論30 4.1六軸機械手臂與實驗設備31 4.2力量/力矩座標系轉換基礎實驗40 4.2.1驗證力量/力矩座標系轉換法40 4.2.2不具力量/力矩轉換公制M8螺絲_扭力值0.6Nm43 4.3以螺絲裝配策略之阻抗控制於扭力值控制49 4.3.1公制M8螺絲_扭力值(0.6Nm)51 4.3.2公制M8螺絲_扭力值(0.8Nm)55 4.3.3公制M8螺絲_扭力值(1.0Nm)59 4.3.4公制M6螺絲_扭力值(0.6Nm)63 4.3.5公制M6螺絲_扭力值(0.8Nm)67 4.3.6公制M6螺絲_扭力值(1.0Nm)71 4.4結果討論75 第五章結論與未來展望77 參考文獻78

[1]Nitzan, D. and Rosen, C.A., “Programmable Industrial Automation,” IEEE Transactions On Computers, Vol. C-25, No. 12, pp. 1259-1270, 1976.
[2]Pbrez, T.L., Jones, J.L., Mazer, E., Patrick, A., “Task-Level Planning of Pick-and-Place Robot Motions” IEEE Computer Society, Vol. 22, No. 3, pp. 21-29, 1989.
[3]Murakami, S. and Takemoto, F., “Weld-Line Tracking Control of Arc Welding Robot Using Fuzzy Logic Controller,” Fuzzy Sets and Systems Applications of Fuzzy Logic Control to Industry, North-Holland, Vol. 32, No. 2, pp. 221-237, 1989.
[4]Chen, H.C., Zhang, R.H., Luo, J. and Li X., “Application Research of Fuzzy Control Methods Used in Welding Robot,” IEEE Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, Vol. 2, pp. 261-264, 2010.
[5]Endregaard, E.A., “Paint robotics—Improving Automotive Painting Performance,” Automotive finishing Metal Finishing, Vol. 100, No. 5, pp. 8-10 pp.12-13, 2002.
[6] Muzan1, I.W., Faisal1, T., Assadi, H.M.M.A and Iwan1, M., “Implementation of Industrial Robot for Painting Applications,” International Symposium on Robotics and Intelligent Sensors(IRIS), Vol. 41, pp. 1329-1335, 2012
[7]White, T., Hewer, N., Luk, B.L. and Hazel, J., “The Design and Operational Performance of A climbing Robot Used for Weld Inspection in Hazardous Environments,” Proceedings of the IEEE International Conference Control Applications, Vol. 1, pp. 451-455, 1998.
[8]Heyer, C., “Human-robot interaction and future industrial robotics applications,” IEEE, Intelligent Robots and Systems (IROS), Taipei, pp. 4749-4754, 2010.
[9]Jin, G.G., Zhao, F.C, Li and Q.W., “Small Part Assembly with Dual Arm Robot and Smart Camera” Proceedings of the IEEE ISR/Robotic International Symposium on Robotics, Munich, Germany, pp. 1-6, 2014.
[10]Broenink, J.F. and Martin, L.J., “Peg-in-Hole Assembly Using Impedance Control with A 6 DOF Robot,” Proceedings 8th European Symposium Simulation in Industry, Genoa, Italy, pp. 504-508, 1996.
[11]Nagata, F., Watanabe, K., Kiguchi, K. and Tsuda, K., “Joystick Teaching System for Polishing Robots Using Fuzzy Compliance Control,” Proceedings of the IEEE International Conference computational Intelligence in Robotics and Automation, pp. 362-367, 2001.
[12]Song, H.C. and Song, J.B., “Precision Robotic Deburring Based on Force Control for Arbitrarily Shaped Workpiece Using CAD Model Matching,” International Journal of Precision Engineering and Manufacturing, Vol. 14, No.1, pp. 85-91, 2013.
[13]Hsuand, F.Y. and Fu, L.C., “Intelligent Robot Deburring Using Adaptive Fuzzy Hybrid Position/Force Control,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 4, pp. 325-335, 2000.
[14]Sharif, L.H., Yamane, S., Sugimoto, T. and Oshima, K., “Intelligent cooperative Control System in Visual Welding Robot,” The 27th Annual Conference of IEEE Industrial Electronics Society, Denver, CO, Vol. 1, pp. 439-443, 2001.
[15]Weiss, L., Sanderson, A. and Neuman, C., “Dynamic Sensor-Based Control of Robots with Visual Feedback” IEEE Journal on Robotics and Automation, Vol. 3, No. 5, pp. 404-417, 1987.
[16]Melchiorri, C. “Slip Detection and Control Using Tactile and Force Sensors,” IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 3, pp. 235-243, 2000.
[17]Ferretti, G., Magnani, G., Rocco, P. and Cecconello, F., “Impedance Control for Industrial Robots,” Proceedings of the IEEE International Conference Robotics and Automation, Vol. 4, pp. 4027-4032, 2000.
[18]Sturges, R.H. and Laowattana, S., “Passive Assembly of Non-Axisymmetric Rigid Parts,” Proceedings of the IEEE/RSJ/GI International Conference Intelligent Robots and Systems, Vol.2, pp. 1218-1225, 1994.
[19] Ciblak, N. and Lipkin, H., “New Properties of the Remote Center of Compliance,” Proceedings of the IEEE International Conference Robotics and Automation, Albuquerque, NM, Vol. 2, pp. 921-926, 1997.
[20]Asada, H. and Kakumoto, Y., “The Dynamic RCC Hand for High-Speed Asembly,” Proceedings of the IEEE International Conference Robotics and Automation, Philadelphia, PA, Vol. 1, pp. 120-125, 1988.
[21]Zeng, G. and Hemami, A., “An Overview of Robot Force Control,”Robotica Department of Electrical Engineering and Computer Science, Vol. 15, pp. 473-482, 1997.
[22]Yoshikawa, T., “Force Control of Robot Manipulators,” Proceedings of the IEEE International Conference Robotics and Automation, San Francisco, CA, Vol. 1, pp. 220-226, 2000.
[23]Mason, M.T., “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 6, pp. 418-432, 1981.
[24]Raibert, M.H. and Craig, J.J., “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 102, pp. 126-133, 1981.
[25]Nagata, F., Kusumoto, Y., Watanabe, K. and Tsuda, K., “Polishing Robot for PET Bottle Molds using A Learning-Based Hybrid Position/Force Controller,” IEEE Control Conference, Melbourne, Victoria, Australia, Vol. 2pp. 914-921, 2004.
[26]Doulgeri, Z. and Karayiannidis, Y., “Force/Position Regulation for a Robot in Compliant Contact Using Adaptive Surface Slope Identification,” IEEE Transactions on Automatic Control, Vol. 53, No. 9, pp. 2116-2122, 2008.
[27]Doulgeri, Z. and Karayiannidis, Y., “Force/Position Tracking of a Robot in Compliant Contact with Unknown Stiffness and Surface Kinematics,” Proceedings of the IEEE International Conference Robotics and Automation, Roma, pp. 4190-4195, 2007.
[28]Alexander, W. and Jozef, S., “Robot Force/Torque Control in Assembly,” IFAC Manufacturing Modelling, Management and Control, Saint Petersburg, Russia, pp. 796-801, 2013.
[29]Hogan, N., “Impedance Control: An Approach to Manipulation: Part  -Applications,” Journal of Dynamic Systems, Measurement and control, Transactions of the ASME, Vol. 107, No. 1, pp. 17-24, 1985.
[30]Chan, S.P. and Liaw, H.C., “Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 4, pp. 453-461, 1996.
[31]Tanaka, Y. and Tsuji, T., “On-line Learning of Robot Arm Impedance Using Neural Networks,” IEEE Robotics and Biomimetics, Shenyang, China, pp. 941-946, 2004.
[32]Song, H.E., Kim, M.C. and Song, J.B., “USB Assembly Strategy based on Visual Servoing and Impedance Control,” Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Korea, pp. 114-117, 2015.
[33]Kalani, H., Akbarzadeh, A. and Mousavi, A., “Fuzzy Impedance Control Strategy for Jaw Rehabilitation Using 6-UPS Stewart Robot,” Robotics and Mechatronics (ICROM), Tehran, Iran, pp. 645-650, 2015.
[34]陳正欽,「以關節位置命令為基礎之可變阻抗控制應用於人與機器人協同作業」,博士論文,國立台灣科技大學,台北市,2015。

QR CODE