簡易檢索 / 詳目顯示

研究生: 范姜士嘉
Shih-Chia Fan Chiang
論文名稱: 用於麥克納姆輪全向自走車之車輪自動故障檢測
Automatic Wheel Fault Detection of Omni-directional Vehicle with Mecanum Wheel
指導教授: 張以全
I-Tsyuen Chang
藍振洋
Chen-yang Lan
口試委員: 張以全
I-Tsyuen Chang
藍振洋
Chen-yang Lan
林顯易
Hsien-I Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 麥克納姆輪故障檢測車輪故障全向自走車
外文關鍵詞: Mecanum wheel, fault detection, wheel fault, omnidirectional vehicle
相關次數: 點閱:236下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出了一種自動偵測麥克納姆輪全向自走車車輪故障的方法。
現代社會中,工業界及自動化高科技產業為了追求產能高效率,常會以移動型平台及多功能之自走車作為載具。相較於常見的自走車,全向車的優勢在於可以藉由車輪全向之特性,克服工作場域狹小所造成車身移動的問題。然而,當全向自走車車輪的故障時,會導致自走車定位困難及使其全向特性失效,進而造成工作效率降低。為了要防範及警示這些使得全向車車輪故障的問題,本研究提出了一種以各車輪系統的黏滯摩擦係數(Viscous friction coefficient, D_o)作為判別車輪是否故障的參數。藉由全向車系統之運動學模型及動力學模型,取得黏滯摩擦係數與各車輪轉速的關係。利用兩個參數的關係,呈現出全向自走車車輪的當下的移動情況,並且能即時呈現車輪發生故障的特徵。此外,本研究也利用各車輪系統的黏滯摩擦係數進行地面狀況的分析及探討。全向自走車移動於不同材質的地面時,同時觀察各車輪黏滯摩擦係數的變化,可得出全向自走車於不同材質的地面時,各車輪的黏滯摩擦係數數值大小也會隨之不同。


This thesis develops a detection method for detecting wheel fault of omni-directional vehicle with Mecanum wheel. In the modern industry, in order to achieve high production efficiency, the mobile platforms and the omnidirectional vehicles are often used as vehicles in the industrial and high-tech automation industries. Compared with automatic mobile vehicle , the advantage of omnidirectional vehicle is that it can overcome the problem of body movement caused by the narrow working area by the characteristics of the wheels. However, once the omnidirectional wheel fails, it will cause difficulty in positioning and also reduce the omnidirectional characteristics and work efficiency.In order to prevent and warn of these problems that make the wheels of omnidirectional vehicles fail, the proposed method utilizes the viscous friction coefficients ($D_o$) of each wheels to determine whether the wheels of the omnidirectional vehicle are fault or not. The relationship between the viscous friction coefficients and the speed of each wheels are obtained by the kinematics model and dynamics model of the omnidirectional vehicle system.
According to the variation of the relationship between the two parameters, the movement of the wheels of the omnidirectional vehicle can be verified and the characteristics of wheels failure can be presented.
In addition, the proposed method also utilizes the viscous friction coefficients of each wheels system to analyze the ground conditions.
The value of the viscous friction coefficients of each wheels are different when the omnidirectional vehicle moves on the ground of different materials.

論文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 符號說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 麥克納姆輪及其應用介紹 . . . . . . . . . . . . . . . . . . . . 4 1.2.2 麥克納姆輪研究狀況 . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 麥克納姆輪全向車之故障檢測 . . . . . . . . . . . . . . . . . . 8 1.3 研究動機與目的及本文架構 . . . . . . . . . . . . . . . . . . . . . . . 10 2 麥克納姆輪全向自走車模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 運動學模型 (Kinematics model) . . . . . . . . . . . . . . . . . . . . . . 11 2.2 動力學模型 (Dynamics model) . . . . . . . . . . . . . . . . . . . . . . 17 3 模型式麥克納姆輪自動故障檢測 . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 模型式車輪故障檢測 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 III 3.2 故障判定方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 實驗設備介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 麥克納姆輪全向車之車輪故障檢測 . . . . . . . . . . . . . . . . . . . 31 4.2.1 全向車行走方向:直行 . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 全向車行走方向:橫行 . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3 全向車行走方向:自轉 . . . . . . . . . . . . . . . . . . . . . . 58 4.3 不同路面情況之車輪黏滯摩擦係數分析 . . . . . . . . . . . . . . . . . 63 4.4 不同車輪大小之車輪黏滯摩擦係數分析 . . . . . . . . . . . . . . . . . 70 5 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 77

[1] M. Wada and H. Asada, “Design and control of a variable footprint mechanism for

holonomic omnidirectional vehicles and its application to wheelchairs,” IEEE Trans-
actions on Robotics and Automation, vol. 15, no. 6, pp. 978–989, 1999.

[2] P. I.-T. Chang, C.-C. Liu, S.-C. F. Chiang, and C.-Y. Lan, “Signal-based and model-
based wheel fault detection of omni-directional vehicle with mecanum wheel,” in

2020 International Automatic Control Conference (CACS), pp. 1–6, 2020.
[3] O. Diegel, A. Badve, G. Bright, J. Potgieter, and S. Tlale, “Improved mecanum wheel

design for omni-directional robots,” Australasian Conference on Robotics and Au-
tomation, 05 2012.

[4] A. Typiak, M. J. Łopatka, Ł. Rykała, and M. Kijek, “Dynamics of omnidirectional
unmanned rescue vehicle with mecanum wheels,” AIP Conference Proceedings,
vol. 1922, no. 1, p. 120005, 2018.
[5] E. C. Orozco-Madaleno, F. Gomez-Bravo, E. Castillo, and G. Carbone, “Evaluation
of locomotion performances for a mecanum-wheeled hybrid hexapod robot,” IEEE/
ASME Transactions on Mechatronics, pp. 1–1, 2020.
[6] E. Malayjerdi, H. Kalani, and M. Malayjerdi, “Self-tuning fuzzy pid control of a
four-mecanum wheel omni-directional mobile platform,” in Electrical Engineering
(ICEE), Iranian Conference on, pp. 816–820, 2018.
[7] P. Viboonchaicheep, A. Shimada, and Y. Kosaka, “Position rectification control for

mecanum wheeled omni-directional vehicles,” in IECON’03. 29th Annual Confer-
ence of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), vol. 1,

pp. 854–859 vol.1, 2003.

77

[8] N. Tlale and M. de Villiers, “Kinematics and dynamics modelling of a mecanum
wheeled mobile platform,” in 2008 15th International Conference on Mechatronics
and Machine Vision in Practice, pp. 657–662, 2008.
[9] Y. Liu, H. Li, L. Ding, L. Liu, T. Liu, J. Wang, and H. Gao, “An omnidirectional

mobile operating robot based on mecanum wheel,” in 2017 2nd International Con-
ference on Advanced Robotics and Mechatronics (ICARM), pp. 468–473, 2017.

[10] J. S. Keek, S. L. Loh, and S. H. Chong, “Comprehensive development and control of
a path-trackable mecanum-wheeled robot,” IEEE Access, vol. 7, pp. 18368–18381,
2019.
[11] K. Piemngam, I. Nilkhamhang, and P. Bunnun, “Development of autonomous mobile
robot platform with mecanum wheels,” in 2019 First International Symposium on
Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 90–
93, 2019.
[12] J. LI, H. Feng, C.-l. Tu, S.-s. JIN, and X.-s. WANG, “Design of inspection robot for
spherical tank based on mecanum wheel,” in 2019 Far East NDT New Technology
Application Forum (FENDT), pp. 218–224, 2019.
[13] A. Ramirez-Serrano and R. Kuzyk, “Modified mecanum wheels for traversing rough
terrains,” in 2010 Sixth International Conference on Autonomic and Autonomous
Systems, pp. 97–103, 2010.
[14] S. Gulpanich, J. Petchhan, and N. Wongvanich, “Plc-based wheelchair control with
integration of the internet of things,” pp. 1598–1603, 09 2018.

[15] C. Mandel, T. Luth, T. Laue, T. Rofer, A. Graeser, and B. Krieg-Bruckner, “Navi-
gating a smart wheelchair with a brain-computer interface interpreting steady-state

visual evoked potentials,” pp. 1118 – 1125, 11 2009.
[16] Y. Yu, Z. Zhou, Y. Liu, J. Jiang, E. Yin, N. Zhang, Z. Wang, Y. Liu, X. Wu, and

D. Hu, “Self-paced operation of a wheelchair based on a hybrid brain-computer in-
78

terface combining motor imagery and p300 potential,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 12, pp. 2516–2526, 2017.
[17] J. W. Kang, B. S. Kim, and M. J. Chung, “Development of omni-directional mobile
robots with mecanum wheels assisting the disabled in a factory environment,” in
2008 International Conference on Control, Automation and Systems, pp. 2070–2075,
2008.

[18] J.Mackenzie and R.Anderson,"The potential effects of electronic stability control interventions on rural road crashes in australia:Simulation of real world crashes,"11 2009

[19] S. MELLAH, G. GRATON, E. M. E. ADEL, M. OULADSINE, and A. PLAN-
CHAIS, “Detection isolation of sensor and actuator additive faults in a 4-mecanum

wheeled mobile robot (4-mwmr),” in 2019 International Conference on Control, Au-
tomation and Diagnosis (ICCAD), pp. 1–6, 2019.

[20] P. Vlantis, C. P. Bechlioulis, G. Karras, G. Fourlas, and K. J. Kyriakopoulos, “Fault
tolerant control for omni-directional mobile platforms with 4 mecanum wheels,” in
2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2395–
2400, 2016.

[21] G. C. Karras and G. K. Fourlas, “Model predictive fault tolerant control for omni-
directional mobile robots,” Journal of Intelligent & Robotic Systems, vol. 97, no. 3,

pp. 635–655, 2020.
[22] G. K. Fourlas, S. Karkanis, G. C. Karras, and K. J. Kyriakopoulos, “Model based
actuator fault diagnosis for a mobile robot,” in 2014 IEEE International Conference
on Industrial Technology (ICIT), pp. 79–84, 2014.

QR CODE