簡易檢索 / 詳目顯示

研究生: 林相岳
Hsiang-Yueh Lin
論文名稱: 元啟發式演算法應用於剛性岩盤上雙層土壤與方形埋置基礎動態互制系統承受水平與旋轉振動之簡化分析
Application of Metaheuristic Algorithms in Simplified Analysis for Dynamic Interaction System of Two Soil Layers and Embedded Square Foundation with Rigid Bedrock Undergoing Horizontal and Rocking Vibrations
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 林宏達
Horn-Da Lin
盧之偉
Chih-Wei Lu
施俊揚
Jun-Young Shi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 146
中文關鍵詞: 土壤結構互制剛性岩盤上部結構簡化模式元啟發式演算法參數最佳化分析集中參數模型
外文關鍵詞: Soil-structure interaction, Rigid bedrock, Upper structure, Simplified model, Metaheuristic algorithms, Parameter optimization analysis, Lumped-parameter model
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種簡化模式,模擬承受水平與旋轉振動之剛性岩盤上雙層土壤與方形埋置基礎動態互制系統,並於頻率域與時間域驗證簡化模式的準確度。
    本論文基於實際土壤—基礎系統之阻抗函數,提出由5組水平單元及1組旋轉單元構成之集中參數模型,並透過鑑識科學流程演算法與基因演算法進行參數最佳化分析,建立適用於不同基礎質量比的簡化模式。本論文藉由量化實際土壤—基礎系統與簡化模式兩者動態反應的差異,驗證簡化模式的準確度。頻率域分析結果顯示,於不同土壤厚度比、土壤剪力波速比及基礎質量比下,整體而言,簡化模式的水平及旋轉放大係數均方根誤差皆小於 ;時間域分析結果顯示,於衰減簡諧外力與地震外力作用下,整體而言,簡化模式的尖峰誤差皆小於 。基於該研究成果,證明本論文所提出的簡化模式於頻率域與時間域皆有一定適用性及準確度。
    此外,本論文於實際土壤—基礎系統及簡化模式中,引入上部建築結構並進行時間域分析。研究成果顯示,上部建築結構會降低簡化模式的準確度。因此,建立簡化模式可能需要考慮上部建築結構對整體系統的影響。


    This thesis proposes a simplified model to simulate emulate the dynamic interaction system of square foundation embedded in two soil layers with rigid bedrock undergoing horizontal and rocking vibrations. The accuracy of the proposed simplified model is validated within both the frequency domain and the time domain.
    This thesis proposes a lumped-parameter model constituted of five horizontal units and one rotational unit, based on the impedance function of an actual soil-foundation system. The lumped-parameter model undergoes optimization analysis using forensic-based investigation algorithm and genetic algorithm, which are utilized to approximate its dynamic response to that of the actual soil-foundation system. This enables the achievement of a simplified model, adaptable across diverse of foundation mass ratios. This thesis quantifies the difference between the dynamic responses of the actual soil-foundation system and the simplified model, thereby validating the accuracy of the simplified model. Frequency domain analysis results indicate that, in general, for different soil thickness ratios, soil shear wave speed ratios, and foundation mass ratios, the root mean square errors of both horizontal and rotational magnification factors in the simplified model are below 10%. Time domain analysis results indicate that, in general, undergoing decay harmonic force and seismic forces, the peak errors of the simplified model are below 3%. These finding validate the applicability and accuracy of the simplified model proposed in this thesis.
    Additionally, an upper structure is incorporated into both the actual soil-foundation system and the simplified model and subjected to time-domain analysis. The results show that accuracy of the simplified model reduced due to the influence of the upper structure. Consequently, the construction of the simplified model may necessitate consideration of the impacts of the upper structure impose on the soil-foundation system.

    摘要 i ABSTRACT iii 誌謝 v 目錄 vii 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1研究背景及目的 1 1.2研究內容 2 第二章 文獻回顧 5 2.1動態土壤與結構互制系統分析方法 5 2.2土壤—基礎互制系統簡化模式之發展 6 2.3元啟發式演算法 7 2.3.1基因演算法 8 2.3.2鑑識科學流程演算法 9 2.4小結 10 第三章 水平及旋轉振動作用下之土壤—基礎互制系統簡化模式 11 3.1實際之土壤—基礎系統動態反應與參數 11 3.2集中參數模型 15 3.2.1阻抗函數 15 3.2.2水平單元 17 3.2.3旋轉單元 17 3.3簡化模式之土壤—基礎系統動態反應與參數 18 3.4小結 19 第四章 土壤—基礎互制系統簡化模式於頻率域的分析與驗證 21 4.1簡化模式於頻率域之分析架構 21 4.2元啟發式演算法 22 4.2.1基因演算法 22 4.2.2鑑識科學流程演算法 23 4.2.3目標函數 26 4.3剛性岩盤上雙層土壤與方形埋置基礎互制系統 28 4.4最佳化分析之初始化參數 29 4.5集中參數模型最佳化分析 30 4.5.1元啟發式演算法之效能驗證 30 4.5.2修正之集中參數模型 35 4.6小結 38 第五章 土壤—基礎互制系統簡化模式於時間域的分析與驗證 41 5.1簡化模式於時間域之分析架構 41 5.2修正基礎輸入運動 42 5.3簡化模式於時間域之分析 43 5.3.1動態外力作用下的反應 43 5.3.2地震外力作用下的反應 44 5.4上部建築結構對簡化模式之影響 45 5.5小結 46 第六章 結論與建議 47 6.1結論 47 6.2建議 49 參考文獻 51

    [1] Jing-bo, L., & Yandong, L. (1998). A direct method for analysis of dynamic soil-structure interaction based on interface idea. Developments in Geotechnical Engineering, 83, 261-276.
    [2] Gutiérrez, J.A., & Chopra, A.K. (1978). A substructure method for earthquake analysis of structures including structure‐soil interaction. Earthquake Engineering & Structural Dynamics, 6, 51-69.
    [3] Lysmer, J., Tabatabaie, M., Tajirian, F., Vahdani, S., & Ostadan, F. (1981). SASSI–A System for Analysis of Soil-Structure Interaction. University of California, Berkeley.
    [4] Reissner, E. (1936). Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes. Ingenieur-Archiv, 7, 381-396.
    [5] Veletsos, A.S., & Meek, J.W. (1974). Dynamic behaviour of building‐foundation systems. Earthquake Engineering & Structural Dynamics, 3, 121-138.
    [6] Kausel (1974). Forced vibrations of circular foundations on layered media. Research report.
    [7] Tassoulas, J.L., & Kausel, E. (1983). Elements for the numerical analysis of wave motion in layered strata. International Journal for Numerical Methods in Engineering, 19, 1005-1032.
    [8] Wong, H.L., & Luco, J.E. (1985). Tables of impedance functions for square foundations on layered media. International Journal of Soil Dynamics and Earthquake Engineering, 4, 64-81.
    [9] Wolf, J.P., & Somaini, D.R. (1986). Approximate dynamic model of embedded foundation in time domain. Earthquake Engineering & Structural Dynamics, 14, 683-703.
    [10] Andersen, L.V. (2010). Assessment of lumped-parameter models for rigid footings. Computers & Structures, 88, 1333-1347.
    [11] Wolf, J.P., & Paronesso, A. (1992). Lumped‐parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock. Earthquake Engineering & Structural Dynamics, 21, 1021-1038.
    [12] Wu, W., & Chen, C. (2001). Simple lumped‐parameter models of foundation using mass‐spring‐dashpot oscillators. Journal of the Chinese Institute of Engineers, 24, 681 - 697.
    [13] Wu, W., & Lee, W. (2004). Nested lumped‐parameter models for foundation vibrations. Earthquake Engineering & Structural Dynamics, 33.
    [14] Chen, S., & Shi, J. (2006). Simplified Model for Vertical Vibrations of Surface Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 132, 651-655.
    [15] Chen, S., & Shi, J. (2013). A simplified model for coupled horizontal and rocking vibrations of embedded foundations. Soil Dynamics and Earthquake Engineering, 48, 209-219.
    [16] Shi, J. (2020). A systematic modeling approach for layered soil considering horizontal and rotational foundation vibrations. Computers & Structures, 239, 106336.
    [17] Doan Minh Tam(2023)。Development of generic lumped-parameter models for dynamic soil-foundation interaction systems undergoing lateral and rocking vibrations。﹝碩士論文﹞。國立臺灣科技大學營建工程系。
    [18] Holland, J.H. (1975). Adaptation in natural and artificial systems.
    [19] DeJong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems.
    [20] 段隆翔(2016)。使用改良式基因演算法與模擬退火進行剪力構架之結構勁度參數修正。﹝碩士論文﹞。國立交通大學土木工程系所。
    [21] 陳俊廷(2022)。最佳化演算法應用於薄殼結構之主應力線加勁設計。﹝碩士論文﹞。國立臺灣大學土木工程學研究所。
    [22] Chou, J., & Nguyen, N. (2020). FBI inspired meta-optimization. Appl. Soft Comput., 93, 106339.
    [23] Chou, J., & Nguyen, N. (2021). Metaheuristics‐optimized ensemble system for predicting mechanical strength of reinforced concrete materials. Structural Control and Health Monitoring, 28.
    [24] Chou, J., & Nguyen, N. (2022). Scour depth prediction at bridge piers using metaheuristics-optimized stacking system. Automation in Construction.
    [25] Chou, J., Karundeng, M.A., Truong, D., & Cheng, M. (2022). Identifying deflections of reinforced concrete beams under seismic loads by bio‐inspired optimization of deep residual learning. Structural Control and Health Monitoring, 29.
    [26] Nguyen, D., Chou, J., & Tran, D. (2021). Integrating a novel multiple-objective FBI with BIM to determine tradeoff among resources in project scheduling. Knowl. Based Syst., 235, 107640.
    [27] 陳雅婷(2006)。台灣中小學校舍結構耐震能力評估之研究。﹝碩士論文﹞。國立臺灣科技大學營建工程系。

    無法下載圖示 全文公開日期 2024/07/31 (校內網路)
    全文公開日期 2024/07/31 (校外網路)
    全文公開日期 2024/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE