簡易檢索 / 詳目顯示

研究生: 吳沛澄
Pei-Cheng Wu
論文名稱: 智動化揀貨系統之揀貨流程最佳化研究
Optimization of Order Picking Process in Robotic Mobile Fulfillment System
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 陳振明
Chen, Jen-Ming
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 62
中文關鍵詞: 智動化揀貨系統訂單揀貨系統元啟發式演算法區域搜尋模擬
外文關鍵詞: Robotic Mobile Fulfillment System (RMFS), Order Picking, Metaheuristic, Local search, Simulation
相關次數: 點閱:185下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智動化揀貨系統 (Robotic Mobile Fulfillment System, RMFS) 是眾所周
    知且常應用於電子商務業務中的訂單揀貨系統。但是,該系統還有很多方面
    需要改進。最關鍵的問題之一是關於訂單揀貨流程。 RMFS中訂單揀貨流程
    的決策問題可以分為兩個:揀貨訂單指派(POA)和揀貨貨架選擇(PPS)。
    大多數文獻解決了該問題的靜態版本。為了在不同的情況下有效地執行訂單
    揀選,本研究提出了一種啟發式方法來解決即時的問題。所提出的方法根據
    當前情況動態優化訂單批量大小。與大多數文獻最小化貨架訪問相比,所提
    出模型的目標函數是最大化實現高吞吐量的重要指標: Pile-on。最大化每批
    次的Pile-on可以提高揀貨效率,降低系統成本。本研究探討了兩種類型的
    Pile-on。一個是常用於許多文獻的Pile-on——每次貨架訪問揀貨站可提供的
    SKU 數量。另一種是額外考慮完成訂單數量的版本。為了有效地解決問題,
    本研究提出了一種應用貪婪隨機自適應搜索過程(Greedy Randomized
    Adpative Search Procedure, GRASP)元啟發式的啟發式算法。本研究將所提
    出的訂單揀選模型實現於代理人模擬系統,並使用了數個指標來測試所提出
    方法的性能以測試其有效性。結果表明,所提出的方法在大多數指標上都顯
    著優於基準方法,除此之外,本研究發現一項新的指標與訂單吞吐量有很強
    的相關性。


    Firstly, I would like to express my sincerest gratitude to my advisor, Prof.
    Shuo-Yan Chou, who has supported and guided me throughout my research and
    thesis. His ideas, kindness, advice, and passion always inspire and motivate me to
    enhance my work and achieve a great outcome. I would also like to acknowledge
    Prof. Po-Hsun Kuo as my co-advisor and Prof. Jen-Ming Chen as my thesis defense
    committee for their encouragement, insightful comments, evaluation, and
    suggestions for my research.
    Secondly, I would also like to give my appreciation to all my
    labmates/friends in the Center of IoT Innovation (CITI), especially Kiva teammates:
    Moritz, Agnes, Chaterine, Edwin, Tina, Rasyid, Dennis, Ben, Ian, David, and all
    who involves, for their friendliness, kindness, and support during my work in this
    project these past two years. And I also want to give immense gratitude to others
    who provide me with lots of help, patience, guidance, care, and support: Indie, Rafi,
    Ryanda, Joe, Phoebe, Molly, Kevin, and all other members. And I would also like
    to thank my friends who always support, love, and encourage me, especially my
    lovely friend 9mbb. Furthermore, I must express my profound gratitude to my
    parents and siblings for providing me with unfailing support and continuous
    encouragement throughout my years of study and through the process of
    researching and writing this thesis. This accomplishment would not have been
    possible without them. Thank you.

    Abstract ................................................................................................................ i Acknowledgement .............................................................................................. iii Table of Contents ................................................................................................ iv List of Figures...................................................................................................... v List of Tables ...................................................................................................... vi 1. Chapter 1 Introduction ................................................................................. 1 2. Chapter 2 Literature Review ........................................................................ 6 Decision problems in RMFS .................................................................. 6 Order picking and order batching ........................................................... 8 Metaheuristic ....................................................................................... 13 3. Chapter 3 problem description ................................................................... 17 System modeling ................................................................................. 17 Problem description ............................................................................. 21 Heuristic method ................................................................................. 27 4. Chapter 4 Experiment validation ................................................................ 33 Validation of proposed heuristic compared with commercial solver ..... 35 Validation of the proposed model ........................................................ 36 5. Chapter 5 Conclusion and future research .................................................. 49 References ......................................................................................................... 51

    Absolunet. (2020). 10 eCommerce Trends 2020. https://10ecommercetrends.com/
    Aldarondo, F. J., & Bozer, Y. A. (2022). Expected distances and alternative design
    configurations for automated guided vehicle-based order picking systems.
    International Journal of Production Research, 60(4), 1298-1315.
    Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical science, 8(1),
    10-15.
    Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:
    Overview and conceptual comparison. ACM computing surveys (CSUR),
    35(3), 268-308.
    Boysen, N., Briskorn, D., & Emde, S. (2017). Parts-to-picker based order
    processing in a rack-moving mobile robots environment. European Journal
    of Operational Research, 262(2), 550-562.
    Chen, M.-C., & Wu, H.-P. (2005). An association-based clustering approach to
    order batching considering customer demand patterns. Omega, 33(4), 333-
    343.
    Cheng, C.-Y., Chen, Y.-Y., Chen, T.-L., & Yoo, J. J.-W. (2015). Using a hybrid
    approach based on the particle swarm optimization and ant colony
    optimization to solve a joint order batching and picker routing problem.
    International Journal of Production Economics, 170, 805-814.
    Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to
    a number of delivery points. Operations research, 12(4), 568-581.
    Dallari, F., Marchet, G., & Melacini, M. (2009). Design of order picking system.
    The international journal of advanced manufacturing technology, 42(1), 1-
    12.
    De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of
    warehouse order picking: A literature review. European Journal of
    Operational Research, 182(2), 481-501.
    Eglese, R. W. (1990). Simulated annealing: a tool for operational research.
    European Journal of Operational Research, 46(3), 271-281.
    Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search
    procedures. Journal of global optimization, 6(2), 109-133.
    Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell system
    technical journal, 45(9), 1563-1581.
    Hansen, P., Mladenović, N., Brimberg, J., & Pérez, J. A. M. (2019). Variable
    neighborhood search. In Handbook of metaheuristics (pp. 57-97). Springer.
    Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice
    of simulated annealing. In Handbook of metaheuristics (pp. 287-319).
    Springer.
    Ho, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of orderpicking in a distribution centre with two cross-aisles. International Journal
    of Production Research, 44(17), 3391-3417.
    Introduction of Beam Search.
    https://en.wikipedia.org/wiki/Beam_search#cite_note-2
    Jones, T. (1995a). Evolutionary algorithms, fitness landscapes and search Citeseer].
    Jones, T. (1995b). One operator, one landscape. Santa Fe Institute Technical Report,
    95-02.
    52
    Lamballais, T., Merschformann, M., Roy, D., de Koster, M., Azadeh, K., & Suhl, L.
    (2022). Dynamic policies for resource reallocation in a robotic mobile
    fulfillment system with time-varying demand. European journal of
    operational research, 300(3), 937-952.
    Lamballais, T., Roy, D., & De Koster, M. (2017). Estimating performance in a
    robotic mobile fulfillment system. European Journal of Operational
    Research, 256(3), 976-990.
    Li, X., Hua, G., Huang, A., Sheu, J.-B., Cheng, T., & Huang, F. (2020). Storage
    assignment policy with awareness of energy consumption in the Kiva
    mobile fulfilment system. Transportation Research Part E: Logistics and
    Transportation Review, 144, 102158.
    Merschformann, M., Lamballais, T., De Koster, M., & Suhl, L. (2019). Decision
    rules for robotic mobile fulfillment systems. Operations Research
    Perspectives, 6, 100128.
    Merschformann, M., Lamballais, T., & De Koster, R. (2018). Decision Rules for
    Robotic Mobile Fulfillment Systems. Operations Research Perspectives, 6.
    https://doi.org/10.1016/j.orp.2019.100128
    Merschformann, M., Xie, L., & Li, H. (2017). RAWSim-O: A simulation
    framework for robotic mobile fulfillment systems. arXiv preprint
    arXiv:1710.04726.
    Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
    MWPVL. (2012). Leadership in Global Supply Chain and Logistics Consulting.
    https://www.mwpvl.com/html/kiva_systems.html
    Pitsoulis, L. S., & Resende, M. G. (2002). Greedy randomized adaptive search
    procedures. Handbook of applied optimization, 168-183.
    Shi, X., Deng, F., Fan, Y., Ma, L., Wang, Y., & Chen, J. (2021). A Two-Stage Hybrid
    Heuristic Algorithm for Simultaneous Order and Rack Assignment
    Problems. IEEE Transactions on Automation Science and Engineering.
    Statista. (2020). eCommerce worldwide.
    https://www.statista.com/outlook/dmo/ecommerce/worldwide
    Valle, C. A., & Beasley, J. E. (2021). Order allocation, rack allocation and rack
    sequencing for pickers in a mobile rack environment. Computers &
    Operations Research, 125, 105090.
    Wulfraat, M. (2012). Is Kiva systems a good fit for your distribution center? An
    unbiased distribution consultant evaluation.
    https://mwpvl.com/html/kiva_systems.html
    Xie, L., Thieme, N., Krenzler, R., & Li, H. (2021). Introducing split orders and
    optimizing operational policies in robotic mobile fulfillment systems.
    European Journal of Operational Research, 288(1), 80-97.
    Yuan, R., Graves, S. C., & Cezik, T. (2019). Velocity‐Based Storage Assignment in
    Semi‐Automated Storage Systems. Production and Operations
    Management, 28(2), 354-373.
    Zhou, M., Ding, Z., Tang, J., & Yin, D. (2018). Micro behaviors: A new perspective
    in e-commerce recommender systems. Proceedings of the eleventh ACM
    international conference on web search and data mining,
    Zhuang, Y., Zhou, Y., Yuan, Y., Hu, X., & Hassini, E. (2021). Order picking
    optimization with rack-moving mobile robots and multiple workstations.
    European Journal of Operational Research.
    53
    Zou, B., Gong, Y., Xu, X., & Yuan, Z. (2017). Assignment rules in robotic mobile
    fulfilment systems for online retailers. International Journal of Production
    Research, 55(20), 6175-6192.

    QR CODE