簡易檢索 / 詳目顯示

研究生: 林昌緯
Chang-wei Lin
論文名稱: 添加強塑劑下石灰石水泥漿體之流變行為研究
Rheological Behaviors of Superplasticized Limestone Cement Pastes
指導教授: 陳君弢
Chun-tao Chen
口試委員: 陳君弢
Chun-tao Chen
張大鵬
Ta-Peng Chang
鄭安
An Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 213
中文關鍵詞: 強塑劑石灰石流變行為吸附
外文關鍵詞: Superplasticizer, Limestone, Rheological behavior, Adsorption
相關次數: 點閱:175下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討石灰石水泥在添加強塑劑下之流變行為,試驗內容以音叉式黏度儀與迷你坍度錐來探討石灰石水泥漿體的黏度和坍流度隨水化時間與強塑劑劑量之關係,最後並藉由強塑劑吸附與離子濃度的變化來說明漿體的流變行為。試驗結果發現,未添加強塑劑時,添加石灰石粉末提高漿體的黏度且該黏度隨著水化時間的增加而增加;漿體的坍流度則隨著石灰石粉末取代量的增加及水化時間而降低。當使用強塑劑時,漿體的黏度隨著強塑劑劑量與石灰石粉末取代量的增加而降低並隨著水化時間增加而增加;漿體的坍流度隨著強塑劑劑量與石灰石粉末的增加而增加並隨著水化時間的增加而降低。強塑劑的吸附試驗結果說明,漿體的流變行為係受其吸附行為所影響。當石灰石取代量越高時,強塑劑的吸附量會增加,同時發現其中有吸附轉移的趨勢。當水泥用量減少時,漿體孔隙水溶液中的總離子濃度降低故造成強塑劑的吸附量增加。


This study explores the rheogoical behaviors of the cements in the presence of superplasticizers using the vibro-viscometer and the mini-slump cones. The viscosities and the mini-slumps of the cement pastes were related to the hydration time and superplasticizer dosages. The adsorption of the superplasticizers and ion concentrations in the pastes were measured to explain those changes in the rheological behaviors. Results showed that the viscosities of the plain pastes were increased by both the limestone addition and the hydration time. The mini-slumps were decreased by the limestone addition and the hydration time. In the presence of superplasticizers, the viscosities of the pastes were decreased by the limestone addition but increased with the hydration time. The mini-slumps were increased by the limestone addition but decreased with the hydration time. Results also showed that the viscosities and the mini-slumps were found associated with the adsorption, which was increased by the limestone addition. Further results showed that the increased adsorption was attributed to the decreases in the ion concentrations. With higher limestone addition, less cements were used and the limestone did not hydrate most.

摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻探討 2.1 石灰石 2.2 水泥 2.2.1 水泥的主要組成 2.2.2 水泥水化機理 2.2.3 石灰石與水泥早期水化反應 2.3 強塑劑的使用 2.3.1 強塑劑的種類 2.3.2 強塑劑作用機理 2.3.3 石灰石與強塑劑之關係 2.4 漿體流變量測 2.4.1 流變定義 2.4.2 水泥漿體流變 2.4.3 石灰石對水泥漿體流變影響 2.4.4 流變量測方法 第三章 試驗計畫 3.1 試驗材料 3.2 試驗變數 3.2.1 材料變數 3.2.2 試樣編碼說明 3.3 漿體配比設計 3.3.1 石灰石取代量計算 3.3.2 強塑劑劑量換算 3.4 混凝土配比設計 3.5 試驗原理、方法及設備 3.5.1 強塑劑固含量測定試驗 3.5.2 漿體凝結時間試驗 3.5.3 粒徑分析試驗 3.5.4 迷你坍度試驗 3.5.5 酸溶試驗 3.6 吸附試驗 3.7 離子濃度試驗 54 3.8 掃描式電子顯微鏡 59 3.9 X光繞射分析儀 61 3.10 其他試驗儀器 第四章 結果分析與討論 4.1 前言 4.2 先期試驗 4.2.1 音叉式黏度儀與同軸旋轉式黏度儀之關係比較 4.2.2 音叉式黏度儀與迷你坍度試驗之關係比較 4.2.3 影響漿體黏度的可能因素 4.3 石灰石粉末對水泥漿體之影響 4.3.1 凝結時間 4.3.2 黏度 4.3.3 迷你坍度 4.3.4 微觀結構分析 4.4 強塑劑對水泥漿體之影響 4.4.1 黏度 4.4.2 迷你坍度 4.5 強塑劑對石灰石水泥漿體之影響 4.5.1 黏度 4.5.2 迷你坍度 4.5.3 強塑劑吸附量 4.5.4 孔隙水溶液離子濃度 4.5.5 微觀結構分析 4.6 強塑劑對石灰石粉末與石膏之影響 4.6.1 黏度 4.6.2 迷你坍度 4.6.3 強塑劑吸附量 4.6.4 孔隙水溶液離子濃度 4.7 強塑劑與石灰石粉末對不同廠牌水泥漿體之影響 4.7.1 凝結時間 4.7.2 黏度 4.7.3 迷你坍度與黏度之比較 4.7.4 強塑劑吸附量 4.7.5 孔隙水溶液離子濃度 4.8 強塑劑對石灰石混凝土之流變行為 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻 附錄A 不同廠牌水泥黏度量測資料 附錄B不同廠牌水泥坍流度量測資料 附錄C XRD圖譜 附錄D SEM 與EDS圖譜

[1] De Weerdt, K., Haha, M.B., Le Saout, G., Kjellsen, K.O., Justnes, H. and Lothenbach, B., "Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash", Cement and Concrete Research, Vol. 41, No. 3, pp. 279-291, 2011.
[2] Matschei, T., Lothenbach, B. and Glasser, F.P., "The role of calcium carbonate in cement hydration", Cement and Concrete Research, Vol. 37, No. 4, pp. 551-558, 2007.
[3] Kakali, G., Tsivilis, S., Aggeli, E. and Bati, M., "Hydration products of C3A, C3S and Portland cement in the presence of CaCO3", Cement and Concrete Research, Vol. 30, No. 7, pp. 1073-1077, 2000.
[4] Kuzel, H.J. and Pollmann, H., "Hydration of C3A in the presence of Ca(OH)2, CaSO4•2H2O and CaCO3", Cement and Concrete Research, Vol. 21, No. 5, pp. 885-895, 1991.
[5] 鍾廣吉, "台灣的石灰岩". 遠足文化事業股份有限公司, 台北縣, pp. 5-18, 2007.
[6] 張紹周,辛志軍,倪竹君, "水泥化學分析". 化學工業出版社, 北京, pp. 216-221, 2007.
[7] Turanli, L., Uzal, B. and Bektas, F., "Effect of large amounts of natural pozzolan addition on properties of blended cements", Cement and Concrete Research, Vol. 35, No. 6, pp. 1106-1111, 2005.
[8] Lothenbach, B., Le Saout, G., Gallucci, E. and Scrivener, K., "Influence of limestone on the hydration of portland cements", Cement and Concrete Research, Vol. 38, No. 6, pp. 848-860, 2008.
[9] Voglis, N., Kakali, G., Chaniotakis, E. and Tsivilis, S., "Portland-limestone cements. their properties and hydration compared to those of other composite cements", Cement and Concrete Composites, Vol. 27, No. 2, pp. 191-196, 2005.
[10] Tsivilis, S., Batis, G., Chaniotakis, E., Grigoriadis, G. and Theodossis, D., "Properties and behavior of limestone cement concrete and mortar", Cement and Concrete Research, Vol. 30, No. 10, pp. 1679-1683, 2000.
[11] Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M. and Moodi, F., "Influence of various amounts of limestone powder on performance of Portland limestone cement concretes", Cement and Concrete Composites, Vol. 31, No. 10, pp. 715-720, 2009.
[12] EN 197-1, "Cement-Part 1. Composition, specifications and uniformity criteria for common cements", European Committee for Standardization, 2000.
[13] Zhang, X. and Han, J.H., "The effect of ultra-fine admixture on the rheological property of cement paste", Cement and Concrete Research, Vol. 30, No. 5, pp. 827-830, 2000.
[14] Tsivilis, S., Chaniotakis, E., Kakali, G. and Batis, G., "An Analysis of The Properties of Portland Limestone Cements and Concrete", Cement & Concrete Composites, Vol. 24, No. 3-4, pp. 371-378, 2002.
[15] Poppe, A.-M. and De Schutter, G., "Cement hydration in the presence of high filler contents", Cement and Concrete Research, Vol. 35, No. 12, pp. 2290-2299, 2005.
[16] Zhou, J., Qian, S., Beltran, M.G.S., Ye, G., Van Breugel, K. and Li, V.C., "Development of engineered cementitious composites with limestone powder and blast furnace slag", Materials and Structures/Materiaux et Constructions, Vol. 43, No. 6, pp. 803-814, 2010.
[17] Esping, O., "Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete", Cement and Concrete Research, Vol. 38, No. 7, pp. 938-944, 2008.
[18] 黃兆龍, "混凝土性質與行為". 詹氏書局, 台北市, pp. 229-237, 2007.
[19] Mindess, S. and Young, J.F., "Concrete". Prentice-Hall, Englewood Cliffs, London, pp. 57-65, 1981.
[20] Pera, J., Husson, S. and Guilhot, B., "Influence of finely ground limestone on cement hydration", Cement and Concrete Composites, Vol. 21, No. 2, pp. 99-105, 1999.
[21] ASTM C494-11, "Standard Specification for Chemical Admixtures for Concrete", ASTM International, West Conshohocken, PA, 2011.
[22] Malhotra, V.M., "Sixth CANMET/ACI international conference on superplasticizers and other chemical admixtures in concrete". ACI International, Farmington Hills, pp. 101-107, 2000.
[23] Prince, W., Edwards-Lajnef, M. and Aitcin, P.C., "Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste", Cement and Concrete Research, Vol. 32, No. 1, pp. 79-85, 2002.
[24] Cyr, M., Legrand, C. and Mouret, M., "Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives", Cement and Concrete Research, Vol. 30, No. 9, pp. 1477-1483, 2000.
[25] Ramachandran, "Concrete admixtures handbook : properties, science and technology," Park Ridge, N.J.: Noyes Publications, pp. 626, 1984.
[26] 廖東昇, "飛灰與強塑劑對高性能混凝土工程性質影響之研究", 博士論文, 國立台灣科技大學, pp. 32-34, 2006.
[27] Hanehara, S. and Yamada, K., "Rheology and early age properties of cement systems", Cement and Concrete Research, Vol. 38, No. 2, pp. 175-195, 2008.
[28] Aydın, S., Hilmi Aytac, A. and Ramyar, K., "Effects of fineness of cement on polynaphthalene sulfonate based superplasticizer–cement interaction", Construction and Building Materials, Vol. 23, No. 6, pp. 2402-2408, 2009.
[29] Lewis, J.A., Matsuyama, H., Kirby, G., Morissette, S. and Young, J.F., "Polyelectrolyte effects on the rheological properties of concentrated cement suspensions", Journal of the American Ceramic Society, Vol. 83, No. 8, pp. 1905-1913, 2000.
[30] 郭文田, "添加強塑劑對水泥材料水化及其早期行為之影響", 博士論文, 國立中央大學, pp. 51-54, 2000.
[31] Banfill, P.F.G., "Additivity effects in the rheology of fresh concrete containing water-reducing admixtures", Construction and Building Materials, Vol. 25, No. 6, pp. 2955-2960, 2011.
[32] Mikanovic, N. and Jolicoeur, C., "Influence of superplasticizers on the rheology and stability of limestone and cement pastes", Cement and Concrete Research, Vol. 38, No. 7, pp. 907-919, 2008.
[33] Yang, M.a.J., H.M., "Influences of mixing methods on the microstructure and rheological behavior of cement paste", Advanced Cement Based Materials, Vol. 2, No. 2, pp. 70-78, 1995.
[34] Dinger, D.R., "Rheology for ceramists". Dinger Ceramic Consulting Services, Clemson, SC, pp. 11-22, 2002.
[35] Nguyen, V.H., Remond, S. and Gallias, J.L., "Influence of cement grouts composition on the rheological behaviour", Cement and Concrete Research, Vol. 41, No. 3, pp. 292-300, 2011.
[36] Jiang, S., Kim, B.-G. and Aı̈tcin, P.-C., "Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility", Cement and Concrete Research, Vol. 29, No. 1, pp. 71-78, 1999.
[37] 陳君弢,林昌緯,許瑜倩, "強塑劑添加對於水泥漿體流變行為之影響", 台灣混凝土工程研討會, 2009.
[38] Yahia, A., Tanimura, M. and Shimoyama, Y., "Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio", Cement and Concrete Research, Vol. 35, No. 3, pp. 532-539, 2005.
[39] Hallal, A., Kadri, E.H., Ezziane, K., Kadri, A. and Khelafi, H., "Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste", Construction and Building Materials, Vol. 24, No. 8, pp. 1418-1423, 2010.
[40] Daimon, M. and Sakai, E., "Limestone powder concerning reaction and rheology". 4th CANMET/ACI/JCI Int. Conf. on Recent Advances in Concrete Technology, Shigeyoshi Nagataki Symposium, Tokushima, Japan, pp. 41-54, 1998.
[41] Company, A.D., "SV-A Series Users' Handbook". International Div., A&D Company, Limited, Tokyo, Japan, pp. 3-11, 2009.
[42] ASTM C150M-09, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2009.
[43] CNS 61, "卜特蘭水泥", 中華民國國家標準, 經濟部標準檢驗局, 2005.
[44] ASTM C127-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate", ASTM International, West Conshohocken, PA, 2007.
[45] ASTM C125-11b, "Standard Terminology Relating to Concrete and Concrete Aggregates", ASTM International, West Conshohocken, PA, 2011.
[46] ASTM C29-06, "Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate", ASTM International, West Conshohocken, PA, 2006.
[47] Helmuth, R.A., "Abnormal concrete performance in the resence of admixtures". Portland Cement Association, Skokie1995.
[48] ASTM C192-07, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory", ASTM International, West Conshohocken, PA, 2007.
[49] ASTM C1017M-07, "Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete", ASTM International, West Conshohocken, PA, 2007.
[50] ASTM C778-06, "Standard Specification for Standard Sand", ASTM International, West Conshohocken, PA, 2006.
[51] ASTM C191M-08, "Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle", ASTM International, West Conshohocken, PA, 2008.
[52] ASTM C305-11, "Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency", ASTM International, West Conshohocken, PA, 2011.
[53] ISO 13320-1, "Particle size analysis-laser diffraction methods", International Organization for Standardization, 1999.
[54] Kantro, D.L., "Influence of water-reducing admixtures on properties of cement paste-a miniatuer slump test", Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-102, 1980.
[55] ASTM C143M-10a, "Standard Test Method for Slump of Hydraulic-Cement Concrete", ASTM International, West Conshohocken, PA, 2010.
[56] Yilmaz, V.T., Kindness, A. and Glasser, F.P., "Determination of sulphonated naphthalene formaldehyde superplasticizer in cement: a new spectrofluorimetric method and assessment of the UV method", Cement and Concrete Research, Vol. 22, No. 4, pp. 663-670, 1992.
[57] 黃立遠, "飛灰基無機聚合物工程性質及應用之硏究 ", 博士論文, 國立台灣科技大學, pp. 34-42, 2010.
[58] CNS 7103, "快速混凝土拌和機", 中華民國國家標準, 經濟部標準檢驗局, 1986.
[59] Bonen, D. and Sarkar, S.L., "The superplasticizer adsorption capacity of cement pastes, pore solution composition, and parameters affecting flow loss", Cement and Concrete Research, Vol. 25, No. 7, pp. 1423-1434, 1995.
[60] Leemann, A., Lothenbach, B. and Thalmann, C., "Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction", Construction and Building Materials, Vol. 25, No. 1, pp. 344-350, 2011.
[61] Kim, B.G., Jiang, S., Jolicoeur, C. and Aitcin, P.C., "The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste", Cement and Concrete Research, Vol. 30, No. 6, pp. 887-893, 2000.

無法下載圖示 全文公開日期 2017/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE