簡易檢索 / 詳目顯示

研究生: 張浩威
HAO-WEI CHANG
論文名稱: 大面積高速光固化3D列印成型技術之分離力研究
Research on Separation Force of Large Area High-speed Photopolymerization 3D Printing Technology
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 江卓培
Cho-Pei Jiang
林宗翰
Tzung-han Lin
陳建樺
Chien-hua Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 光固化聚合技術大面積列印分離力高速列印
外文關鍵詞: Photopolymerization 3D Printing Technology, Large Area Printing, Separation Force, High Speed Printing
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為對下照式光固化3D列印系統之大面積高速列印所進行的研究,研究目的為找出大面積高速光固化3D列印成型技術中樹脂槽種類的選用、Z軸移動速度和列印面積大小對分離力和列印品質的影響,並歸類出大面積列印下的分離力種類和佔比。
    本研究使用的樹脂槽以矽膠做為主要材料,加入自由基擷取劑製成擷取薄膜,此薄膜能夠有效降低下照式光固化3D列印中所產生的分離力,此分離力為影響列印品質和列印速度的重要關鍵。本研究先探討張力型和硬底型樹脂槽在大面積列印條件下的分離力,再探討一般矽膠薄膜和擷取薄膜在大面積列印條件下的分離力,最後探討在大面積列印條件下,不同Z軸移動速度和列印面積對分離力造成的影響,並找出適合的大面積高速列印的參數趨勢和方向。
    本研究最後發現擷取薄膜張力型樹脂槽最符合大面積高速列印的條件,相較傳統一般薄膜張力型樹脂槽降低了86.2%分離力,並且藉由Z軸移動速度、列印面積與分離力間的關係,得出適合大面積高速列印的參數調整趨勢,以及歸納出大面積高速列印條件下,三種分離力的大小比較和佔比,提供未來更大面積列印的問題解決方向,以期能突破目前光固化3D列印之瓶頸。


    This thesis is a study on the large-area high-speed printing of bottom-exposure 3D printing system. The purpose of this paper is to find the selection of the resin tank type, the effect of Z-axis moving speed and the print area size on separation force and print quality in the large-area high-speed photocuring 3D printing technology, and classify the type and proportion of separation force in large area printing.
    The resin tank used in this study uses silicone as the main material, and a free radical scooping agent is added to make a stripping film, which can effectively reduce the separation force generated in the down-light photocuring 3D printing, and the separation force is affected. The key to printing quality and printing speed. In this study, we first discuss the separation force of tension-type and hard-bottom resin tanks under large-area printing conditions, and then discuss the separation force of general silicone film and film under large-area printing conditions. Finally, we will print on large areas. Under the condition, the influence of different Z-axis moving speed and printing area on the separation force, and find the suitable trend and direction of large-area high-speed printing parameters.
    In the end of the study, it was found that the film tension type resin groove is the most suitable for large-area high-speed printing. Compared with the conventional film tension type resin groove, the separation force is reduced by 86.2%, and the Z-axis moving speed, printing area and separation are achieved. The relationship between the forces, the parameter adjustment trend suitable for large-area high-speed printing, and the comparison of the size and proportion of the three separation forces under the condition of large-area high-speed printing, providing a solution to the problem of printing in a larger area in the future. In order to break through the bottleneck of current photo-curing 3D printing.

    摘要 I ABSTRACT II 致謝 IV 目錄 I 圖目錄 IV 表目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與目的 2 1.3 研究方法 3 1.4 論文架構 3 第二章 文獻回顧 5 2.1 積層製造技術 5 2.2 光聚合固化技術(VAT Photopolymerization) 6 2.2.1 立體光固化成型技術(Stereolithography) 7 2.2.2 Digital Light Processing 8 2.3 光聚合固化原理 10 2.3.1 自由基聚合反應 11 2.4 分離力形成 15 2.5 市面上解決∕降低分離力方法 16 2.5.1 降低∕破除分離力方案 16 2.5.2 解決分離力方案 17 2.5.3 本實驗室使用解決方法 20 第三章 系統架設及設備簡介 21 3.1 機台架設 21 3.1.1 下照式動態光照成型系統 21 3.1.2 數位光源處理技術(Digital Light Processing) 22 3.1.3 控制系統 24 3.1.4 成型平台 26 3.1.5 擷取薄膜樹脂槽架構 26 3.2 實驗儀器介紹 27 3.2.1 光功率量測儀器(Optical Power Meters) 27 3.2.2 測微器(Micrometer) 28 3.2.3 黏度計 28 3.2.4 數位顯微鏡 29 3.2.5 S型荷重元 30 3.3 使用材料 32 第四章 實驗方法 33 4.1 擷取樹脂膜死區厚度檢測方法 33 4.2 材料固化深度檢測方法 34 4.3 列印面積實驗方法 35 4.4 Z軸移動速度實驗方法 37 4.5 黏度實驗方法 38 第五章 實驗結果與討論 40 5.1 大面積列印主要分離力之分析 40 5.1.1 大面積列印樹脂槽種類選擇 40 5.1.2 導致大面積列印失敗的因素探討 43 5.2 一般薄膜與擷取薄膜之列印分離力比較 45 5.2.1 一般薄膜列印連續截面積過大的物件時所遇到的問題(分離力太大導致物件掉落) 46 5.2.2 擷取薄膜對分離力影響程度 46 5.2.3 死區厚度驗證 47 5.2.4 分離力比較 47 5.3 大面積列印參數與分離力趨勢探討 49 5.3.1 不同Z軸移動速度與不同列印面積之列印分離力比較 49 第六章 結論與未來展望 56 6.1 結論 56 6.2 未來研究方向 57 參考文獻 58

    [1]Wikipedia contributors, STL (file format), (https://en.wikipedia.org/w/index.php?title=STL_(file_format)&oldid=902588517).
    [2] H. Kadry, S. Wadnap, C. Xu, F. Ahsan, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets, European Journal of Pharmaceutical Sciences, 135 (2019) 60-67.
    [3] 鄭正元, 江卓培, 林宗翰, 林榮信, 蘇威年, 汪家昌, 蔡明忠, 賴維祥, 鄭逸琳, 洪基彬, 鄭中緯, 宋宜駿, 陳怡文, 賴信吉, 吳貞興, 許郁淞, 陳宇恩, 3D列印積層製造技術與應用, 2017.
    [4] Resin vat for Moai by Peopoly,
    (https://peopoly.net/collections/frontpage/products/resin-vat-for-moai)
    [5] Phrozen Make / Shuffle 離形膜槽體,
    (https://www.phrozen3dp.com/products/resin-vat-for-phrozen-make)
    [6] H. Ye, A. Venketeswaran, S. Das, C. Zhou, Investigation of separation force for constrained-surface stereolithography process from mechanics perspective, Rapid Prototyping Journal, 23 (2017) 696-710.
    [7] Y. Pan, Y. Chen, C. Zhou, Fast Recoating Methods for the Projection-based Stereolithography Process in Micro-and Macro-Scales, 2012.
    [8] J. Jin, J. Yang, H. Mao, Y. Chen, A vibration-assisted method to reduce separation force for stereolithography, Journal of Manufacturing Processes, 34 (2018) 793-801.
    [9] Y.-M. Huang, C.-P. Jiang, On-line force monitoring of platform ascending rapid prototyping system, Journal of Materials Processing Technology, 159 (2005) 257-264.
    [10] J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D.G. Kelly, K. Chen, R.K. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M.J.S. DeSimone, Continuous liquid interface production of 3D objects, 347 (2015) 1349-1352.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE