簡易檢索 / 詳目顯示

研究生: 陳明杰
Ming-Jie Chen
論文名稱: 應用反覆控制於 輪廓預測控制之效能改良
Improving the Performance of Contouring Predictive Control by Adding Repetitive Control
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 陳亮光
Liang-kuang Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 輪廓誤差預測控制反覆控制多週期干擾
外文關鍵詞: contour error, predictive control, repetitive control, multiple-period errors
相關次數: 點閱:322下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輪廓預測控制器是一種將輪廓誤差估測法納入成本函數,藉由模型預測控制理論求解最佳控制量的線上最佳控制演算法;不同於傳統的交叉解耦合控制器設計法,此種控制演算法具備預測未來資訊與限制處理能力的優點,因此近幾年許多學者紛紛提出基於輪廓預測控制的相關設計方法以探討其應用潛力。然而現有文獻中的設計僅考慮輪廓誤差與各軸追跡誤差補償,對於常見的週期性誤差並未予以深入探討。本研究提出一具多週期性訊號處理能力之新型輪廓預測控制設計法,其概念為加入反覆控制器補償週期性輪廓追跡運動所造成的週期性誤差,同時考量因刀具進給軸運動所產生的週期性干擾,以另一不同週期的反覆控制器進行補償。本文以一雙軸馬達伺服系統進行圓形輪廓與多邊形的輪廓追跡控制探討,實驗結果證實所提輪廓控制方法能有效抑制多週期干擾並進一步改善輪廓誤差。


    Contour predictive control is a recently-reported contour control method which includes the contour error into the cost function for contour performance optimization. Due to the advantages such as considering the predicted output for optimalmoves at all sample steps and constraint handling properties, this control algorithm and its variations have been reviewed in a number of published papers. The literature, however, is limited on the study of contour error and axis error compensations; very few studies have been conducted oncompensating the periodic errors commonly shown in many contouring control applications. In light of this, the current study presents a new predictive contour control design which adds repetitive control to compensate for the two different periodic errors caused by the periodic contour motion and tool feed rate motion.Circle and polygon contours are applied to a biaxial servo system for contour performance evaluation. Experimental results show that the proposed contour control method can effectively attenuate multiple-period errors and further improve the contour performance.

    目錄 摘要 Abstract 致謝 目錄 圖目錄 表目錄 符號表 第一章 緒論 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 2 1.4 本文貢獻 5 1.5 本文架構 6 第二章 系統架設 2.1 雙軸對位平台 8 2.2 馬達與驅動器 9 2.3 實驗硬體 10 第三章 模型預測控制器 3.1 模型預測控制建立 11 3.1.1 預測區間與控制區間概念 13 3.1.2 成本函數 13 3.1.3 二次規劃 14 3.2 限制條件 15 3.2.1 輸入限制 15 3.2.2 輸出限制 16 3.3 模型預測控制器設計 17 3.4 結合狀態估測器之模型預測控制器設計 23 3.4.1 極點配置法 23 3.4.2 卡曼估測器 23 3.5 結合輪廓誤差之模型預測控制器 25 3.5.1 輪廓誤差模型預測控制器設計 26 3.6 結合反覆控制之模型預測控制器 28 3.6.1 反覆控制概念 28 3.6.2 反覆模型預測控制設計 30 第四章 實驗結果 4.1 系統識別 34 4.2 馬達模型驗證 36 4.3 模型預測控制器之預測區間最佳參數探討 38 4.4 輪廓預測控制器之輪廓權重最佳參數探討 43 4.5 反覆控制結合模型預測控制器之反覆控制權重最佳參數探討 44 4.5.1 x軸反覆控制權重最佳參數探討 44 4.5.2 y軸反覆控制權重最佳參數探討 46 4.5.3 輪廓反覆控制權重最佳參數探討 48 4.6 不同控制器輪廓追跡比較 50 4.7 多邊形輪廓應用於反覆輪廓控制實驗 53 4.7.1 反覆輪廓控制器多邊形輪廓追跡結果 55 4.7.2 反覆輪廓控制器多邊形輪廓追跡結果加入限制條件 59 4.8 反覆輪廓控制加入不同頻率干擾實驗 64 4.8.1 反覆輪廓控制器加入輸入干擾 64 4.8.2 反覆輪廓控制器加入輸出干擾 70 第五章 結論與未來研究方向 5.1 結論 76 5.2 未來研究方向 77 參考文獻

    [1] D. Gu and H. Hu, “Model predictive control for simultaneous robot tracking and regulation.” in Proceeding of International Conference on Intelligent Mechatronics and Automation, Aug 26-31, 2004, pp. 212-217.
    [2] Ph. Poignet and M. Gautier, “Nonlinear model predictive control of a robot manipulator.” in Proceeding of the 6th International Workshop on Advanced Motion Control, Nagoya, Japan, Apr. 1, 2000, pp. 401-406.
    [3] A. Vivas and P. Poignet, “Predictive functional control of a parallel robot.” in Proceeding of Control Engineering Practice, vol. 13, no. 7, pp. 863-874, 2005.
    [4] 曾郁升,“應用模型預測控制於自動對位系統之影像伺服研究,” 國立台灣科技大學機械工程研究所碩士論文, 2013.
    [5] T. Dam and P.R. Ouyang, “Contour tracking control in position domain for CNC machines, ” in Proceeding of the IEEE International Conference on Information and Automation, Shenzhen, China, June 6-8, 2011 ,pp 14-19.
    [6] Ling, and W. S. Yao, “Application of model predictive control to parallel-type double inverted pendulum driven by a linear motor, “in Proceeding of IEEE Industrial Electronics Society Conference, Taipei, Nov. 5-8, 2007,pp 2904-2909.
    [7] C. Y. Lin and Y. C. Liu, “Precision tracking control and constraint handling of mechatronic servo systems using model predictive control,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp 1-13, 2012.
    [8] K. Erkorkmaz and Y. Altintas, “Quintic spline interpolation with minimal feed fluctuation,” Journal of Manufacturing Science and Engineering, vol. 127, no. 2, pp. 339–349, 2005.
    [9] Y. Koren and C. C. Lo, “Advanced controllers for feed drives,” Journal of Manufacturing Technology, vol. 41, no. 2, pp. 689–698, 1992.
    [10] K. R. Muske and T. A. Badgwell, “Disturbance modeling for offset free linear model predictive control,” Journal of Process Control, vol. 12, no.5, pp. 617–632, 2002.
    [11] Ke Han and Ming-Yang Cheng, “Contouring accuracy improvement using cross-coupled control and position error compensator ,” Journal of Machine and Manufacture, vol. 48, no. 12-13, 2008, pp. 1444 – 1453.
    [12] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” Journal of Dynamic Systems Measurement and control, vol. 109, pp. 65–68, 1987.
    [13] H. Zhang and R. G. Landers, “Precision motion control methodology for complex contours,” Journal of Manufacturing Science and Engineering, vol. 129, pp. 1060–1068, 2007.
    [14] S. Yeh and P. Hsu, “Estimation of the contouring error vector for the cross-coupled control design ,” Mechatronics, vol. 7, no. 1, pp. 44–51, 2002.
    [15] K. Srinivasan and P. K. Kulkarni, “Cross-coupled control of biaxial feed drive servo mechanisms,” Journal of Dynamic Systems Measurement and control, vol. 112, pp. 225–232, 1990.
    [16] Y. Koren, “Cross-coupled biaxial computer for manufacturing systems,” Journal of Dynamic Systems Measurement and control, vol. 102, no. 4, pp. 265–272, 1980.
    [17] Y. Koren and C. C. Lo, “Variable gain cross coupling controller for contouring,” Journal of Dynamic Systems Measurement and control, vol. 40, no. 1, pp. 371–374, 1991.
    [18] D. Shin, H. Ryu, and U. Huh, “Fuzzy logic control for the contouring accuracy of XY positioning system,” in Proceeding of the IEEE Transactions on International Symposium Control, Pusan, 2001, vol. 2, pp. 1248–1252.
    [19] J. Chin, Y. Cheng, and J. Lin, “Improving contour accuracy by fuzzy-logic enhanced cross-coupled precompensation method,” Journal of Robotics and Computer-Integrated Manufacturing, vol. 20, no. 1, pp. 65–76, 2004.
    [20] S. Yeh and P. Hsu, “Theory and applications of the robust cross-coupled control design,” Journal of Dynamic Systems Measurement and control, vol. 121, pp. 524–530, 1999.
    [21] D. Sun, “Position synchronization of multiple motion axes with adaptive coupling control,” Journal of Automatica, vol. 39, no. 1, pp. 997–1005, 2003.
    [22] G. Wang and T. Lee, “Neural-network cross-coupled control system with application on circular tracking of linear motor X-Y table,” International Joint Conference on Neural Networks, Washington, DC, Jul. 10-16, 1999, vol. 3, pp. 2194–2199.
    [23] C. Y. Lin, “Neural Network Adaptive Control and Repetitive Control for High Performance Precision Motion Control,” in Proceeding of SICE Annual Conference 2010, Taipei, Aug 18-21, 2010, pp. 2843-2844.
    [24] Y.S. Tarng , H.Y. Chuang and W.T. Hsu, “Intelligent cross-coupled fuzzy feed-rate controller design for CNC machine tools based on genetic algorithms,” Journal of Manufacturing Science and Engineering , vol. 39, pp. 1673–1692, 1996.
    [25] Hsin-Chiang Ho, Jia-Yush Yen, Shui-Shong Lu, “A decoupled path-following control algorithm based up on the decomposed trajectory error , Journal of Machine Tools & Manufacture, vol.39, pp.1619–1630 , 1998.
    [26] S. Chen, H. Liu, and S. Ting, “Contouring control of biaxial system based on polar coordinates,” IEEE Transcationson Mechatronics, Nov. 7, 2002, vol. 7, no. 3, pp. 329–345.
    [27] Imei Wang, Fuying Jin and Yibiao Sun, “Contour control for direct drive XY table” International Conference on Mechatronics and Automation, Changchun, Aug. 9 - 12, 2009, pp. 4919-4923.
    [28] R. J. McNab and T.-C. Tsao, “Receding time horizon linear quadratic optimal control for multiaxis contour tracking motion control,” Journal of Dynamic System Measurement Control, vol. 122, no. 2, pp. 375–381, 2000.
    [29] T. Chiu and M. Tomizuka, “Contouring control of machine tool feed drive systems: A task coordinate frame approach,” IEEE Transcations Control System Technology, vol. 9, no. 1, pp. 130–139, Jan. 2001.
    [30] Denise Lam, Chris Manzie and Malcolm Good, “Model predictive contouring control,” in Proceeding of 49th IEEE Conference Decision Control, Atlanta, GA, Dec 15-17, 2010, pp. 6137–6142.
    [31] Denise Lam, Chris Manzie and Malcolm Good, “Model predictive contouring control for biaxial systems,” in Proceeding of 51th IEEE Transactionson control systems technology, vol. 31, no.2, 2012, pp. 552–560.
    [32] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, “Constrained model predictive control : stability and optimality.” Journal of Automatica, vol. 36,no. 6, pp 789-814, 2000.
    [33] A. El Khalick M., Naoki Uchiyama, “Discrete-time model predictive contouring control for biaxial feed drive systems and experimental verification,” Mechatronics , vol. 21, no. 6, pp. 918-926, 2011.
    [34] M. Morari and J. H. Lee, “Model predictive control: Past present and future,” Journal of Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667–682, 1999.
    [35] D. Luenberger , Optimization by vector space methods. Wiley: NewYork.,1969.
    [36] P. Dufour, F. Couenne, and Y. Toure, “Model predictive control of acatalytic reverse flow reactor, ” IEEETranscationsonControl System Technology., vol.11, no. 5, pp. 705–714, 2003.
    [37] C. Hildreth, “A quadratic programming procedure,” Naval Research Logistics Quarterly, vol. 4, no. 1, pp. 79-85, 1957.
    [38] Lie Tang and Robert G. Landers, “Predictive contour control with adaptive feedrate ,”IEEE Transcationson Mechatronics , vol. 17, pp. 669–679, 2012.
    [39] Chu Xiong Hu, Zheng Chen, and Qing Feng Wang, “Adaptive Robust Repetitive Control of an Industrial Biaxial Precision Gantry for Contouring Tasks” , IEEE Transcations Control System , vol. 19, no. 6, pp.1559 – 1568., 2011.
    [40] Y.Q. Chen, H.S. Li and X.P. Zhou, “Iterative learning control for cross-coupled contour motion systems” in Proceeding of 2005 IEEE International Conference Mechatronics and Automation , Canada, July 29 - Aug. 1, 2005 , vol. 3, pp. 1468-1472.
    [41] M. S. Tsai, C. L. Yen and H. T. Yau, “Iterative learning control based on a hybrid tracking and contour error algorithm,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore , July 14-17 , 2009, pp.650-655.
    [42] M. Tomizuka, T. C. Tsao, and K. K. Chew, “Analysis and Synthesis of Discrete-Time Repetitive Controllers,” Journal of Dynamic Systems Measurement, and Control, vol. 111, pp. 353-358, 1989.
    [43] 劉燕忠, “模型預測控制於精密機電伺服系統之應用,” 國立台灣科技大學機械工程研究所碩士論文, 2010.
    [44] 黃一桓, “模型預測控制於撓性樑主動抑振控制研究之實驗探討,” 國立台灣科技大學機械工程研究所碩士論文, 2012.
    [45] L. Wang, Model predictive control system design and implementation using MATLAB, London, United Kingdom: Springer-Verlag, 2009.
    [46] Edoardo Mosca, “Predictive Control With Constraints. Eaglewood Cliffs. Englewood Cliffs ,” Control Systems, Robotics, and Automatic, vol.11, pp. 1-11, 2008.
    [47] E. R. Panier, “An active set method for solving linearly constrained nonsmooth optimization problems.” Journal of Mathematical Programming, vol. 37 ,no. 3, pp. 269-292,1987.
    [48] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1994.
    [49] C. Roos, T. Terlaky and J. P. Vial, Theory and algorithms for linear optimization: an interior point approach, Hoboken, New Jersey: John Wiley, 1997.
    [50] S. J. Wright, C. Hildreth, A Quadratic Programming Procedure, Naval Research Logistics Quarterly, vol. 4, no. 1, pp. 79-85, March 1957.
    [51] L. Wang, Model predictive control system design and implementation using MATLAB, London, United Kingdom: Springer-Verlag, 2009.
    [52] K. R. Muske and T. A. Badgwell, “Disturbance modeling for offset free linear model predictive control,” Journal of Process Control, vol. 12, no.5, pp. 617–632, 2002.
    [53] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems, Boston, Massachusetts: Addison-Wesley, 1994.
    [54] R. E. Kalman, “A New approach to linear filtering and prediction problems,” Transactions ASME, Journal of Basic Engineering, vol. 82, pp. 35-45, 1960.
    [55] L. Ljung, System Identification Toolbox for Use with MATLAB, The Math Works, 2007.
    [56] 鄭永彬, “大型撓性結構系統之測試平台建置與控制,”清雲科技大學機械工程研究所碩士論文, 2011.
    [57] A. A. El-Badawy and A. H. Nayfeh ,“Control of a directly excited structural Dynamic Model of an F-15 Tail Section, ” Journal of the Franklin Institute, vol. 338, no. 2-3, pp. 133-147, March 2001.
    [58] P. Arcara, S. Bittanti, and M. Lovera, “Active control of vibrations in helicopters by periodic optimal control, ” in Proceedings of the 1997 IEEE Control Applications, Hartford, USA, Oct. 5-7, 1997, pp. 730-735.
    [59] S. Bittanti and F. A. Cuzzola, “ Periodic Active Control of Vibrations in Helicopters: A Gain Scheduled Multi-Objective Approach,” Control Engineering Practice, vol. 10, no. 10, pp. 1043-1057, Oct. 2002.
    [60] T. Faulwasser, B. Kern, and R. Findeisen ,“Model predictive path-following for constrained nonlinear systems,” in Proceedings of 48th IEEE Conference Decision Control, Shanghai, Dec 15-18, 2009, pp. 8642–8647.
    [61] Y. Pan and J. Wang, “Two neural network approaches to model predictive control.” in American Control Conference, Seattle, Washington, June 11-13, 2008, pp. 1685-1690.

    QR CODE