簡易檢索 / 詳目顯示

研究生: 林志嶽
Chih-Yueh Lin
論文名稱: CsPbX3鈣鈦礦量子點材料性質及發光元件研究
The study of properties of CsPbX3 perovskite quantum dots and its application in emission devices
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Ji-Jhen Wu
陳貞夙
Jhen-Su Chen
陳景翔
Jing-Siang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 113
中文關鍵詞: 全無機鈣鈦鈣量子點發光原件
外文關鍵詞: CsPbX3 perovskite, quantum dots, emission devices
相關次數: 點閱:428下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要以室溫合成法進行全無機溴化銫鉛鈣鈦礦量子點材料製備,並藉由結構分析與光學性質量測進行材料特性的研究。由分析結果可知:以室溫合成法所製備的溴化銫鉛鈣鈦礦量子點,其尺寸分佈均勻且螢光量子效率可達82%。此與文獻報導以熱注入合成法製備的產物並無明顯差異,但此製程與熱注入法相較之下更加快速便捷,且具有大量生產的可行性。此外,溴化銫鉛鈣鈦礦量子點可藉由不同的鹵素前驅物,快速進行陰離子交換,改變組成與激發光波長進而達到涵蓋可見光波段。在本研究中,以陰離子置換法所製備的碘化銫鉛與氯化銫鉛量子點的螢光量子效率分別為67.7%與7.6%。此外,在銫鉛鹵化物鈣鈦礦量子點穩定性研究方面,在此以矽氧化合物包覆銫鉛鹵化物鈣鈦礦量子點並進行粉體製作。由分析結果顯示,經包覆的銫鉛鹵化物鈣鈦礦量子點都達到一定程度阻擋了水氣破壞的影響並延長其螢光壽命。將矽氧化合物包覆溴化銫鉛與碘化銫鉛量子點粉體與UV膠均勻混合後製成光轉換層,置於365 nm的氮化銦鎵藍光二極體晶片上。經元件驅動後,可測量其色標位置為(0.354,0.334),和標準白光光源(0.33,0.33)十分接近,證實能作為白光二極體的光轉換材料。


    In this study, a room temperature process was used to synthesized all-inorganic perovskite cesium lead bromide quantum dots (CsPbBr3 ¬QDs) and structural analyses and optical measurement were used to characterize as-synthesized CsPbBr3 ¬QDs. From analysis results, we can know that the room process is suitable to synthesize CsPbBr3 ¬QDs and its quantum yield approaching 82 %. The properties of CsPbBr3 ¬QDs prepared by the room temperature process are similar to that prepared by hot injection process. Comparing to hot injection, the room temperature process is more quickly and easily and with the feasibility of mass production. In addition, we can adjust the composition and emission wavelength of CsPbBr3 ¬QDs rapidly by using anion exchange process, such as Cl- and I- ions, to obtain CsPbCl3 and CsPbI3 ¬QDs. There quantum yield approach 7.6 % and 67.7%. For the study of stability of CsPbX3 (X=Cl, Br, I) ¬QDs, CsPbBr3 and CsPbI3¬ QDs were embedded on polyhedral oligomeric silsesquioxane (POSS), carry out powder production to avoid the influence of water and oxygen for long time. The CsPbBr3-POSS and CsPbI3-POSS QDs powder were mixed together on the UV gel to form the white light converter layer and the white light could be observed under the illumination of 365 nm indium gallium nitride light-emitting diode (InGaN LED). According to analyses of CIE 1931 uniform chromaticity-scale diagram and photoluminescence spectrum, our white LED device for backlight display passed through a color filter with a NTSC value of 107 % and the gamut is (0.354, 0.334).

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章、緒論 1 1-1 量子點簡介 1 1-2研究動機與目的 2 第二章、 理論基礎與回顧 3 2-1半導體量子點簡介 3 2-2鈣鈦礦量子點材料 7 2-2-1鈣鈦礦結構 7 2-2-2 CsPbX3量子點材料製備 8 2-2-2-1高溫熱注入法製備CsPbX3量子點 8 2-2-2-2室溫合成法製備CsPbX3量子點 9 2-2-2-3室溫合成法和高溫熱注入法比較 11 2-2-3鈣鈦礦量子點材料特性 12 2-2-3-1 CsPbX3 (X = Cl,Br,I)量子點型態調控 12 2-2-3-2 CsPbX3 (X = Cl,Br,I)陰離子交換特性 14 2-2-4提升鈣鈦礦量子點材料對環境穩定性 16 第三章、實驗設計 33 3-1實驗流程圖 33 3-2實驗藥品與設備儀器 34 3-2-1 藥品/耗材名稱 34 3-3實驗分析儀器 39 3-3-1紫外-可見光吸收光譜儀(UV/VIS spectrophotometer) 39 3-3-2螢光光譜儀 (Fluorescence spectrophotometer) 40 3-3-3 X 光繞射分析儀 (X-ray diffraction,XRD) 41 3-3-4場發穿透式電子顯微鏡 (Transmission electron microscope,TEM) 43 3-4實驗步驟 46 3-4-1以室溫合成法合成CsPbBr3量子點步驟 46 3-4-2以高溫熱注入法合成CsPbBr3量子點步驟 48 3-4-3 CsPb(Br/Cl)3、CsPb(Br/I)3陰離子置換步驟 50 3-4-3-1 以PbX2置換CsPb(Br/Cl)3、CsPb(Br/I)3步驟 50 3-4-3-2 以TBA-X置換CsPb(Br/Cl)3、CsPb(Br/I)3步驟 51 3-4-4 量測CsPbX3量子點螢光量子效率 52 3-4-5 CsPbX3量子點材料包覆POSS材料步驟 53 3-4-6以CsPbX3-POSS粉末製備白光發光元件步驟 53 第四章、結果討論 54 4-1 CsPbBr3量子點之製備與性質分析 54 4-1-1 銫離子前驅物種類和元素比例對CsPbBr3量子點之性質影響 54 4-1-2 熱注入法和室溫合成法合成之CsPbBr3量子點性質比較 57 4-1-3 以室溫法進行大量生產CsPbBr3量子點之可行性評估 60 4-2 以陰離子交換法進行CsPbI3與CsPbCl3量子點製備與性質分析 62 4-2-1 不同陰離子前驅物對CsPbBr3量子點置換之性質影響 63 4-2-2 使用陰離子前驅物置換之CsPbX3量子點性質分析 66 4-3 CsPbX3量子點材料對環境穩定性測試與分析 72 4-3-1 以POSS包覆CsPbBr3 及CsPbI3量子點之性質分析 73 4-3-2 以POSS包覆CsPbX3量子點後對環境穩定性測試分析 80 第五章、結論 90 第六章、參考文獻 91

    S. Gonzalez-Carrero, R. E. Galian and J. Perez-Prieto, Particle & Particle Systems Characterization 32, 709-720 (2015).
    2. C. J. Yu, U. G. Jong, M. H. Ri, G. C. Ri and Y. H. Pae, Journal of Materials Science 51, 9849-9854 (2016).
    3. S. J. Sun, Y. N. Fang, G. Kieslich, T. J. White and A. K. Cheetham, Journal of Materials Chemistry A 3, 18450-18455 (2015).
    4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics 24, 905-913 (2016).
    5. Y. W. Xiaoming Li , Shengli Zhang , Bo Cai , Yu Gu , Jizhong Song , and Haibo Zeng, Advanced Functional Materials (2016).
    6. M. fox, Optical Properties of Solids , Oxford University Press: New York (2001).
    7. A. P. Alivisatos, Science 271, 933 (1996).
    8. C. R. M. Kagan, D. B. Dimitrakopoulos, C. D., Science 286, 945-947 (1999).
    9. M. Gratzel, Nature Materials 13, 838-842 (2014).
    10. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
    11. J. Werner, C. H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen and C. Ballif, Journal of Physical Chemistry Letters 7, 161-166 (2016).
    12. S. W. Shi, Y. F. Li, X. Y. Li and H. Q. Wang, Materials Horizons 2, 378-405 (2015).
    13. A. S. B. G. Roy, The perovskite structure - A review of its role in ceramic science and technology, Springer International Publishing AG: New York (2000).
    14. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Nano Letters 15, 5635-5640 (2015).
    15. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nano Letters 15, 3692-3696 (2015).
    16. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Journal of the American Chemical Society 137, 10276-10281 (2015).
    17. S. Wei, Y. C. Yang, X. J. Kang, L. Wang, L. J. Huang and D. C. Pan, Chemical Communications 52, 7265-7268 (2016).
    18. X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song and H. B. Zeng, Advanced Functional Materials 26, 2435-2445 (2016).
    19. C. K. W. Moller, H.L., Nature 182 (1958).
    20. M. Nikl, K. Nitsch, K. Polak, E. Mihokova, S. Zazubovich, G. P. Pazzi, P. Fabeni, L. Salvini, R. Aceves, M. BarbosaFlores, R. P. Salas, M. Gurioli and A. Scacco, Journal of Luminescence 72-4, 377-379 (1997).
    21. X. Z. Lan, S. Masala and E. H. Sargent, Nature Materials 13, 233-240 (2014).
    22. D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chemical Reviews 110, 389-458 (2010).
    23. Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic, Nature Photonics 7, 13-23 (2013).
    24. D. M. Trots and S. V. Myagkota, Journal of Physics and Chemistry of Solids 69, 2520-2526 (2008).
    25. C. J. Wang, A. S. R. Chesman and J. J. Jasieniak, Chemical Communications 53, 232-235 (2017).
    26. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Science 354, 92-95 (2016).
    27. C. K. Moller, Nature 182, 1436 (1958).
    28. E. Mosconi, C. Quarti, T. Ivanovska, G. Ruani and F. De Angelis, Physical Chemistry Chemical Physics 16, 16137-16144 (2014).
    29. Y. H. Chang, C. H. Park and K. Matsuishi, Journal of the Korean Physical Society 44, 889-893 (2004).
    30. D. Weber, Z. Naturforsch 33 1443-1445 (1978).
    31. H. Chung, S. I Jung, H. J. Kim, W. Cha, E. Sim, D. Kim, W. K. Koh and J. Kim, Angewandte Chemie-International Edition 56, 4160-4164 (2017).
    32. Y. F. S. Hoshino, Physical Review B 9, 4549 (1974).
    33. M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool and I. Ahmad, Journal of Alloys and Compounds 705, 828-839 (2017).
    34. D. D. Zhang, S. W. Eaton, Y. Yu, L. T. Dou and P. D. Yang, Journal of the American Chemical Society 137, 9230-9233 (2015).
    35. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang and A. P. Alivisatos, Journal of the American Chemical Society 137, 16008-16011 (2015).
    36. J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li and H. B. Zeng, Advanced Materials 28, 4861-4869 (2016).
    37. L. Martinez-Sarti, T. M. Koh, M. G. La-Placa, P. P. Boix, M. Sessolo, S. G. Mhaisalkar and H. J. Bolink, Chemical Communications 52, 11351-11354 (2016).
    38. S. B. Sun, D. Yuan, Y. Xu, A. F. Wang and Z. T. Deng, ACS Nano 10, 3648-3657 (2016).
    39. G. P. Li, H. Wang, T. Zhang, L. F. Mi, Y. G. Zhang, Z. P. Zhang, W. J. Zhang and Y. Jiang, Advanced Functional Materials 26, 8478-8486 (2016).
    40. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, Nano Letters 14, 2584-2590 (2014).
    41. Q. Wang, B. Chen, Y. Liu, Y. H. Deng, Y. Bai, Q. F. Dong and J. S. Huang, Energy & Environmental Science 10, 516-522 (2017).
    42. C. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik and A. Eychmuller, Chemistry of Materials 28, 9033-9040 (2016).
    43. H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai and R. S. Liu, Angewandte Chemie-International Edition 55, 7924-7929 (2016).
    44. H. Huang, B. K. Chen, Z. G. Wang, T. F. Hung, A. S. Susha, H. Z. Zhong and A. L. Rogach, Chemical Science 7, 5699-5703 (2016).
    45. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Nature Nanotechnology 9, 687-692 (2014).
    46. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag, Angewandte Chemie-International Edition 54, 15424-15428 (2015).
    47. W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Miguez and H. J. Snaith, Nano Letters 15, 1698-1702 (2015).
    48. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Analytical Chemistry 81, 6285-6294 (2009).
    49. U. Resch-Genger and K. Rurack, Pure and Applied Chemistry 85, 2005-2026 (2013).
    50. J. Begum, W. Day, C. Henderson, S. Purewal, J. Cerveira, H. Summers, P. Rees, D. Davies and A. Filby, Cytometry Part A 83, 1085-1095 (2013).
    51. A. M. Brouwer, Pure and Applied Chemistry 83, 2213-2228 (2011).
    52. U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert and R. Macdonald, Journal of Fluorescence 15, 337-362 (2005).
    53. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. Demello and M. V. Kovalenko, Nano Letters 16, 1869-1877 (2016).
    54. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. W. Gong, P. Kanjanaboos, A. F. Nogueira and E. H. Sargent, ACS Applied Materials & Interfaces 7, 25007-25013 (2015).
    55. B. Xie, R. Hu and X. B. Luo, Journal of Electronic Packaging 138, 13 (2016).
    56. R. D. Zhu, Z. Y. Luo and S. T. Wu, Optics Express 22, A1783-A1798 (2014).
    57. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov and S. Brovelli, Nature Photonics 8, 392-399 (2014).
    58. F. Palazon, F. Di Stasio, S. Lauciello, R. Krahne, M. Prato and L. Manna, Journal of Materials Chemistry C 4, 9179-9182 (2016).
    59. O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon and I. Mora-Sero, Journal of Physical Chemistry Letters 6, 1883-1890 (2015).
    60. J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong and H. B. Zeng, Advanced Materials 27, 7162-+ (2015).
    61. X. Y. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy and A. L. Rogach, Nano Letters 17, 598-598 (2017).
    62. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im and T. W. Lee, Advanced Materials 27, 1248-1254 (2015).
    63. G. R. Li, Z. K. Tan, D. W. Di, M. L. Lai, L. Jiang, J. H. W. Lim, R. H. Friend and N. C. Greenham, Nano Letters 15, 2640-2644 (2015).
    64. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, Nature Photonics 8, 489-494 (2014).
    65. X. L. Zhang, B. Xu, J. B. Zhang, Y. Gao, Y. J. Zheng, K. Wang and X. W. Sun, Advanced Functional Materials 26, 4595-4600 (2016).
    66. F. W. R. R. Guangru Li, Nathaniel J. L. K. Davis, Sai Bai, Tom C. Jellicoe, Francisco de la Peña, Shaocong Hou, Advanced Materials 28, 3528 (2016).
    67. Y. C. Choi, S. W. Lee and D. H. Kim, Apl Materials 5, 6 (2017).
    68. M. Z. Long, T. K. Zhang, H. Y. Zhu, G. X. Li, F. Wang, W. Y. Guo, Y. Chai, W. Chen, Q. Li, K. S. Wong, J. B. Xu and K. Y. Yan, Nano Energy 33, 485-496 (2017).
    69. T. Zhao, C. C. Chueh, Q. Chen, A. Rajagopal and A. K. Y. Jen, ACS Energy Letters 1, 757-763 (2016).
    70. M. L. Cai, V. T. Tiong, T. Hreid, J. Bell and H. X. Wang, Journal of Materials Chemistry A 3, 2784-2793 (2015).
    71. Z. Chen, Z. G. Gu, W. Q. Fu, F. Wang and J. Zhang, ACS Applied Materials & Interfaces 8, 28737-28742 (2016).

    QR CODE