簡易檢索 / 詳目顯示

研究生: 林和緯
Ho-Wei Lin
論文名稱: 應用於電動載具之切換式電容無線功率傳輸研製
Wireless Power Transfer with Switch-Controlled Capacitors for EV Application
指導教授: 林景源
Jing-Yuan Lin
口試委員: 謝耀慶
Yao-Ching Hsieh
邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 開關控制電容器LCC-LCC 諧振式轉換無線功率傳輸磁場耦合
外文關鍵詞: Switching controlled capacitor, LCC-LCC compensation, Wireless power transfer, Magnetic field coupling
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為探討切換式電容器應用於11.1 kW的電動車無線功率傳輸系統上,使用數位訊號處理器控制切換式電容器改變其等效電容值,進而改變諧振槽增益使其穩住不同負載下之輸出電壓。本論文根據國際電動車規範(Society of Automotive Engineers, SAE J2954TM )所提出之WPT3/Z2 (功率等級/Z軸規格)架構、介紹其充電盤實作偏移量限制、傳送端(Ground Assembly, GA)線圈、接收端線圈(Vehicle Assembly, VA)之規格與圈數。最後為符合SAE J2954TM所提出之WPT3/Z2規範,諧振槽輸入端最大電流40A與 GA線圈最大電流75A之限制與諧振槽可變元件之電抗限制,將對(Double Side LCC, DS-LCC)諧振式轉換器進行分析與設計。為方便分析將介紹無線功率傳輸之耦合線圈等效電路模型,推導出DS-LCC諧振式轉換器之諧振槽轉移函數,即可繪出不同負載與諧振參數下之輸出電壓,最後根據SAE J2954TM規範所提出之諧振槽可變元件,將提出切換式電容電路介紹其動作原理與控制方法,並將其與DS-LCC諧振式轉換器整合應用。
    本論文中將提出一套設計流程,依照此流程進行設計,可確保WPT3/Z2之切換式電容拓撲電路能符合SAE J2954TM所提出之規範,並在指定電路規格限制下之負載與耦合係數內,以固定操作頻率85kHz,可以穩定可靠工作。最後實作出一組11.1 kW無線功率傳輸系統原型機,此原型機在傳送線圈(GA)與接收線圈(VA)在垂直距離相差140 mm至210 mm之間以及X軸偏移量75 mm, Y軸偏移量100 mm時皆能達到輸出規格要求,最高效率為89.4%。


    This thesis presents a 11.1 kW WPT with switching controlled capacitor (SCC) topology applied on electric vehicle charging. In order to remain the output power, change the gain of resonant tank by using digital signal processor (DSP) to control the capacitance value of SCC. Based on WPT3/Z2 resonant compensation topology which proposed by Society of Automotive Engineers (SAE J2954TM), introduce the coil size、number of turns, and X-Y-Z axis operating range requirements for ground assemble coil and vehicle assemble coil. Finally, in order to accord with specification of SAE J2954TM, limiting the maximum input current of the resonant tank 40 A, primary coil 75 A and the limitation reactance of resonant tank elements. resonant network will be analyzed and designed. To simplify the equivalent circuit of resonant tank, the equivalent circuit models of loosely coupled coil for WPT will be analyzed and the gain curve of the DS-LCC will be illustrated. Then, the resonant tank variable element proposed according to the SAE J2954TM.This thesis will introduce the operation principle and control method of SCC. In the end, we integrated these into DS-LCC compensation circuit.
    In this thesis, a design flow will be proposed, according to the flow which can ensure the circuit can work stably within the constant frequency 85 kHz. Finally, a prototype 11.1 kW WPT system is built and tested. The specifications can be satisfied when the coil is between 140 mm and 210 mm, and the X-axis offset is 75 mm, and the Y-axis offset is 100 mm. The highest efficiency is 89.4%.

    摘要 i Abstract ii 目錄 iii 圖索引 v 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 4 第二章 無線充電系統架構與規範介紹 5 2.1 功率傳輸線圈模型分析 5 2.1.1 變壓器模型 5 2.1.2 非理想變壓器T模型 6 2.1.3 電感耦合模型 7 2.1.4 電感耦合T模型 9 2.2 無線充電拓撲架構 10 2.3 SAE J2954TM規範 12 2.3.1 無線充電系統分類 13 2.3.2 WPT3/Z2架構介紹 15 2.3.3 傳送端(GA)、接收端(VA)充電盤架構介紹 15 第三章 切換式電容拓撲架構分析 19 3.1 切換式電容動作分析 22 3.2 切換式電容數學分析 27 3.3 切換式電容之開關訊號偵測電路分析 31 3.3.1零交越偵測電路分析 32 3.3.2積分電路分析 34 第四章 DS-LCC諧振式轉換器與並聯整流器分析 37 4.1 DS-LCC 諧振式轉換器架構介紹 37 4.2 基本波近似法 39 4.3 LCC-CCC 諧振式轉換器轉移函式推導 40 4.4 並聯整流器架構分析 42 4.5 交錯式整流架構與負載電阻壓縮之關係 44 4.6 DS-LCC 諧振式轉換器與交錯式整流器整合應用 46 第五章 電路規格與設計考量 48 5.1 電路規格 48 5.2 元件參數設計流程 49 5.2.1 交錯式整流設計 49 5.2.2 諧振槽參數設計 52 第六章 電路模擬與實驗結果 64 6.1 模擬與實際量測波形 64 6.1.1 切換式電容之開關訊號電路模擬 64 6.1.2 WPT3/Z2 切換式電容拓樸架構模擬與實測 65 6.2 無線充電實體架構圖 74 第七章 結論與未來展望 77 7.1 結論 77 7.2 未來展望 78 參考文獻 79

    [1] A Global comparison of the life- cycle greenhouse gas emissions of compustion engine and electric passenger cars JULY 20,2021 By:Georg Bieker
    [2] Wireless power transfer–task 26 final report.pdf Accessed: Jul. 20, 2020.[Online].Available:http://www.ieahev.org/assets/1/7/Task_26_Final_Report_v1.7_(FINAL2).pdf Google Scholar
    [3] A.A.S. Mohamed, A. Meintz, P. Schrafel, A. Calabro“In-Vehicle assessment of human exposure to EMFs from 25-kW WPT system based on near-field analysis IEEE vehicle power and propulsion conference, VPPC) (Aug.2018),pp. 16, 10.1109/VPPC.2018.8605011 in 2018
    [4] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, ‘‘Wireless power transfer via strongly coupled magnetic resonances,’’ Science, vol. 317, no. 5834, pp. 83–86, 2007.
    [5] S. Y. R. Hui, W. Zhong, and C. K. Lee, ‘‘A critical review of recent progress in mid-range wireless power transfer,’’ IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014
    [6] A.A. Mohamed, A. Meintz, L. Zhu ‘‘System design and optimization of in-route wireless charging infrastructure for shared automated electric vehicles’’ IEEE Access, 7 (2019), pp. 79968-79979
    [7] Interoperability of the universal WPT3 transmitter with different receivers for electric vehicle inductive charger Ahmed A.S. Mohamed a, * , Ahmed A. Shaier b , Hamid Metwally b , Sameh I. Selem b
    [8] SAE Recommended Practice J2954 (rev. 201711): Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, 2017.
    [9] D. Ahn and S. Hong, ‘‘Wireless power transmission with self-regulated output voltage for biomedical implant,’’ IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2225–2235, May 2014.
    [10] A. P. Sample, D. T. Meyer, and J. R. Smith, ‘‘Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,’’ IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544–554, Feb. 2011.
    [11] N. Y. Kim, K. Y. Kim, J. Choi, and C.-W. Kim, ‘‘Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer,’’ Electron. Lett., vol. 48, no. 8, pp. 452–454, Apr. 2012.
    [12] T. C. Beh, M. Kato, T. Imura, S. Oh, and Y. Hori, ‘‘Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling,’’ IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3689–3698, Sep. 2013.
    [13] S. Li, W. Li, J. Deng, and C. C. Mi, ‘‘A double-sided LCC compensation network and its tuning method for wireless power transfer,’’ IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 1–12, Jun. 2015.
    [14] Y. H. Kim and K. H. Jin, "Design and Implementation of a Rectangular-Type Contactless Transformer," in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, Dec. 2011.
    [15] M. Ryu, H. Cha, Y. Park and J. Back, "Analysis of The Contactless Power Transfer System Using Modelling and Analysis of The Contactless Transformer," Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, Raleigh, NC, 2005, pp. 7
    [16] D. Thenathayalan and J. H. Park, "Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, Oct. 2015.
    [17] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014.
    [18] W. Li, H. Zhao, S. Li, J. Deng, T. Kan, and C.C. Mi, Integrated LCC Compensation Topology for Wireless Charger in Electric and Plug-in Electric Vehicles, IEEE Trans. Ind. Electron., vol. 62, no. 7, 2014, pp. 4215-4225.
    [19] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-sided LCLC compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, 2015, pp. 6011–6014
    [20] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jun. 2013.
    [21] Z. Pantic, B. Sanzhong, and S. Lukic, “ZCS LCC-compensated resonant inverter for inductive-power-transfer application,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3500–3510, Aug. 2011.
    [22] S. Samanta and A. K. Rathore, “Analysis and design of load independent ZPA operation for P/S, PS/S, P/SP, and PS/SP tank networks in IPT applications,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6476–6482, Aug. 2018.
    [23] J. Hou, Q. Chen, S.-C. Wong, and C. K. Tse, and X. Ruan, “Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer,” IEEE J. Emerging. Sel. Topics Power Electron., vol. 3, no. 1, pp. 124–136, Mar. 2015.
    [24] W. Li, H. Zhao, J. Deng, S. Li, and C. Mi, “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4429–4439. Jun. 2016.
    [25] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
    [26] W. Zhang and C. C. Mi, “Compensation topologies of high-power wireless power transfer systems,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4768–4778, Jun. 2016.
    [27] W. Zhou and H. Ma, “Design considerations of compensation topologies in ICPT system,” in Proc. IEEE Conf. Appl. Power Electron., 2007, pp. 985– 990.
    [28] J. Hou, Q. Chen, S.-C. Wong, C. K. Tse, and X. Ruan, “Analysis and control of series/series-parallel compensated resonant converters for contactless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 124–136, Mar. 2015.
    [29] Y. Su, C. Tang, S. Wu, and Y. Sun, “Research of LCL resonant inverter in wireless power transfer system,” in Proc. Int. Conf. Power Syst. Technol., Chongqing, China, 2006, pp. 1–6.
    [30] N. Keeling, G. A. Covic, F. Hao, L. George, and J. T. Boys, “Variable tuning in LCL compensated contactless power transfer pickups,” in Proc. IEEE Energy Convers. Congr. Expo., San Jose, CA, USA, 2009, pp. 1826– 1832.
    [31] D. Xin et al., “Improved LCL resonant network for inductive power transfer system,” in Proc. IEEE PELS Workshop Emerg. Technol.: Wireless Power, Daejeon, South Korea, 2015, pp. 1–5.
    [32] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
    [33] H. Hao, G. A. Covic, and J. T. Boys, “An approximate dynamic model of LCL- $T$-based inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554–5567, Oct. 2014.
    [34] C. Liu, S. Ge, Y. Guo, H. Li, and G. Cai, “Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis,” IET Power Electron., vol. 9, no. 11, pp. 2262–2270, 2016.
    [35] Z. Pantic, S. Bai, and S. M. Lukic, “ZCS LCC-compensated resonant inverter for inductive-power-transfer application,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3500–3510, Aug. 2011
    [36] US Patent for Wireless energy transfer systems Patent (Patent # 8,461,719)]
    [37] A.A.S. Mohamed, A.A. Shaier, H. Metwally, S.I. Selem A comprehensive overview of inductive pad in electric vehicles stationary charging Appl Energy, 262 (Mar. 2020)
    [38] E. S. Lee, B. G. Choi, J. S. Choi, D. T. Nguyen, and C. T. Rim, “Wide-range adaptive IPT using dipole-coils with a reflector by variable switched capacitance,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 8054–8070, Oct. 2017
    [39] F. Lu, H. Hofmann, J. Deng and C. Mi, "Output power and efficiency sensitivity to circuit parameter variations in double-sided LCC compensated wireless power transfer system," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 597-601.
    [40] D.-H. Kim and D. Ahn, “Self-tuning LCC inverter using PWMcontrolled switched capacitor for inductive wireless power transfer,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3983–3992, May 2019
    [41] J. Zeng, J. Liu, J. Yang, and F. Luo, “A voltage-feed high-frequency resonant inverter with controlled current output as a high-frequency AC power source,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4854–4863, Sep. 2015.
    [42] J. Zhao, J. Zhang, and Y. Zhu, “A flexible wireless power transfer system with switch controlled capacitor,” IEEE Access, vol. 7, pp. 106873–106881, 2019.
    [43] C. S. Wong, Y. P. Chan, L. Cao, L. Wang, K. H. Loo, and M. C. Wong, “A single-stage dynamically compensated IPT converter with unity power factor and constant output voltage under varying coupling condition,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10121–10136, Oct. 2020.
    [44] J. Zhang, J. Zhao, Y. Zhang, and F. Deng, “A wireless power transfer system with dual switch-controlled capacitors for efficiency optimization,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6091–6101, Jun. 2020.
    [45] Teaching of Fourier series expansions in undergraduate education Manuel J. C. S. Reis;Salviano Soares;Simão Cardeal;Raul Morais;Emanuel Peres;Paulo J. S. G. Ferreira 2013 IEEE Global Engineering Education Conference(EDUCON) Year:2013 Conference Paper Publisher: IEEE
    [46] C. Zheng et al., "High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
    [47] R. Chen et al., "Analysis and Parameters Optimization of a Contactless IPT System for EV Charger," Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual 77 IEEE, Fort Worth, TX, 2014, pp. 1654-1661
    [48] DANILOVIC, Milisav; KURS, Andre B. Wireless power systems having interleaved rectifiers. U.S. Patent No 10,418,841, 2019.

    無法下載圖示 全文公開日期 2025/08/08 (校內網路)
    全文公開日期 2025/08/08 (校外網路)
    全文公開日期 2025/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE