簡易檢索 / 詳目顯示

研究生: 梁仁
Ren Liang
論文名稱: 氧化鋅對具奈米孔洞圖騰之玻璃基板 的光催化特性影響
Effect of Nanometer Oxide on the Photocatalytic Properties of Glass Substrate with Porous Anodic Aluminum Oxide Film
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳柏均
Chen,Po-Chun
丘群
Chun Chiu
朱英豪
Ying-Hao Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 陽極氧化鋁紫外光吸收光觸媒效應氧化鋅
外文關鍵詞: Anodized aluminum, Ultraviolet light absorption, Photocatalyst effect, Zinc oxide
相關次數: 點閱:241下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在玻璃基板上進行表面改質,用以增強光學與光催化性能,特別針對紫外光 之吸收率改善。在玻璃基板的表面改質過程中,依序研究濺鍍之鋁與鋅金屬,以確認不 同製程對於薄膜之影響。利用射頻濺鍍機在透光玻璃基板上沉積鋁薄膜;並透過電化學 加工,製造具備奈米孔洞陣列結構之陽極氧化鋁薄膜(AAO),之後再使用不同之濺鍍參 數在玻璃與陽極氧化鋁薄膜複合基板上濺鍍鋅薄膜,以沈積出分佈均勻且平整的鋅薄膜。 為了使濺鍍後之鋅薄膜擁有光學與光催化性能,進一步氧化鍍後之鋅薄膜形成氧化鋅薄 膜,由於奈米孔洞陣列結構之陽極氧化鋁薄膜使得沈積在基板上之氧化鋅薄膜會依照奈 米孔洞陣列結構沉積,使得氧化鋅薄膜能夠擁有更多表面積誘發更佳之光學與光催化特 性。分析過程中,使用 SEM 和 X 光繞射儀確認製備樣品的形態和結構,並使用紫外-可 見光譜量測儀鑑定表面改質後之複合玻璃的透光率。結果顯示,在表面改質後之玻璃基 板,紫外光之吸收度由 20 上升至 90%。而從結果得知紫外光之吸收度與光觸媒效應之 效能分別與濺鍍金屬之濺鍍量與濺鍍表面積有關,氧化鋅金屬之量越多,紫外光的吸收 能力越高;而擁有越多表面積,光觸媒效應之效能也隨之提升,故在表面改性後之玻璃 基板具備紫外光吸收和光催化特性並保有優異的可見光透射率,其具備在許多實際應用 中使用的潛力。


In this study, the surface modification of glass substrate was carried out to enhance the optical and photocatalytic properties especially for the light transmittance. The modification of glass substrates was investigated with sequence of process to determine its behavior towards the Al and Zn films. The Al was sputtered over the glass substrate using radio frequency sputtering instrument and treated in electrochemical bath to form a uniform well-ordered aluminum anodic oxide structure with optimized conditions. Besides, the thin Zn film was sputtered over the glass/AAO substrate using different operating conditions to provide uniform well distributed layer. The resulted Zn was further oxidized in accordance to ZnO formation and their optical transmittance behavior. The sputtering condition allows the Zn to diffuse deeper and dispersal along the AAO structure which was major concern in the ZnO film formation. In the modification of ZnO/AAO/glass substrate, the working parameters were optimized to acquire tunable structures related to optical properties. The morphology and structural formation of the as-prepared sample were confirmed using SEM and X-ray diffraction. The optical transmittance attributed to the modified AAO and ZnO/AAO films were identified by UV spectra. The results showed that after the surface modification of the glass substrate, the absorption of ultraviolet light increased from 20 to 90%. The absorption of ultraviolet light and the photocatalyst effect were related to the amount of metal sputtered and the surface area of the substrate after sputtering. The greater the amount of zinc oxide attributed higher the absorption capacity of ultraviolet light. While increasing the surface area would improve the efficiency of the photocatalyst effect. Therefore, a surface-modified glass with ZnO/AAO revealed the excellent visible light transmittance in relation to ultraviolet light absorption and photocatalyst effects which has the potential to be used in wide array of practical applications.

摘要 IV Abstract V 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第1章 序論 1 1.1 研究背景 1 1.2 研究動機與目的 1 第2章 文獻回顧 3 2.1 玻璃基板之探討 3 2.2 奈米化的尺寸效應 5 2.2.1 表面效應 5 2.2.2 量子侷限效應 6 2.2.3 小尺寸效應 7 2.3 氧化鋅之探討 8 2.3.1 氧化鋅特性 8 2.3.2 氧化鋅奈米化之光催化特性改變 9 2.3.3 奈米圖騰對於沈積物之特性改變 12 2.4 陽極氧化鋁 14 2.4.1 陽極氧化鋁簡介 14 2.4.2 陽極氧化鋁生長機制 14 2.4.3 陽極處理參數 16 2.5 沉積薄膜研究 18 2.5.1 物理氣相沉積 19 2.5.2 濺鍍 20 2.5.3 真空濺射種類 20 2.6 光觸媒效應 23 2.6.1 光催化效應簡介 23 2.6.2 光觸媒催化反應基本原理 24 2.7 文獻回顧總結 25 第3章 實驗方法與步驟 26 3.1 實驗流程圖 26 3.2 實驗設備 27 3.3 實驗步驟 29 3.3.1 玻璃基材準備 29 3.3.2 濺鍍鋁作業 29 3.3.3 陽極處理 29 3.3.4 擴孔處理 30 3.3.5 鍍鋅作業 30 3.3.6 氧化處理 30 3.3.7 光觸媒效應液體分析 30 3.4 實驗參數 31 3.5 實驗分析與儀器原理 33 3.5.1 場發射掃描式電子顯微鏡 34 3.5.2 X光繞射儀 35 3.5.3 紫外-可見光譜量測儀 37 3.5.4 感應耦合電漿原子發射光譜儀(ICP - OES) 37 3.5.5 表面積及孔徑分析儀 38 第4章 結果與討論 40 4.1 各項製程外觀形貌變化 40 4.2 濺鍍鋁膜表面與橫截面分析 41 4.2.1 鋁膜微觀結構 42 4.3 陽極處理分析 42 4.3.1 微觀結構分析結果 42 4.3.2 光學特性分析結果 43 4.4 陽極氧化鋁擴孔分析 44 4.4.1 微觀結構分析結果 44 4.4.2 光學特性分析結果 46 4.4.3 比表面積分析結果 47 4.5 濺鍍鋅分析 48 4.5.1 微觀結構分析 48 4.6 氧化鋅分析 52 4.6.1 氧化鋅X光繞射儀分析結果 52 4.6.2 光學特性分析結果 53 4.7 光觸媒效應分析 55 4.7.1 液體光觸媒效應分析結果 55 4.7.2 感應耦合電漿原子發射光譜儀分析結果 57 第5章 結論與未來展望 59 5.1 研究結果總結 59 5.2 未來展望 60 參考文獻 61 附錄 65

[1] S. Walheim, E. Schäffer, J. Mlynek, and U. J. S. Steiner, "Nanophase-separated polymer films as high-performance antireflection coatings," vol. 283, no. 5401, pp. 520-522, 1999.
[2] S. Mapoung et al., "Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts," vol. 130, pp. 198-207, 2020.
[3] M. Pashchanka, S. Yadav, T. Cottre, and J. J. J. N. Schneider, "Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors," vol. 6, no. 21, pp. 12877-12883, 2014.
[4] K. E. Peloi et al., "Antioxidative Photochemoprotector Effects of Cerium Oxide Nanoparticles on UVB Irradiated Fibroblast cells," p. 111013, 2020.
[5] H.-Y. Phin, Y.-T. Ong, and J.-C. J. J. o. E. C. E. Sin, "Effect of carbon nanotubes loading on the photocatalytic activity of zinc oxide/carbon nanotubes photocatalyst synthesized via a modified sol-gel method," p. 103222, 2019.
[6] S. K. Lakhera, R. Venkataramana, G. Mathew, H. Y. Hafeez, and B. J. M. S. i. S. P. Neppolian, "Fabrication of high surface area AgI incorporated porous BiVO4 heterojunction photocatalysts," vol. 106, p. 104756, 2020.
[7] C. Xiong and K. J. J. C. o. m. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film," vol. 17, no. 20, pp. 5136-5140, 2005.
[8] C. B. Marien, T. Cottineau, D. Robert, and P. J. A. C. B. E. Drogui, "TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat," vol. 194, pp. 1-6, 2016.
[9] P. Chowdhury, K. Raghuvaran, M. Krishnan, H. C. Barshilia, and K. J. B. o. M. S. Rajam, "Effect of process parameters on growth rate and diameter of nano-porous alumina templates," vol. 34, no. 3, pp. 423-427, 2011.
[10] J. Wu et al., "Ultra-slow growth rate: Accurate control of the thickness of porous anodic aluminum oxide films," vol. 109, p. 106602, 2019.
[11] F. Bruera, G. Kramer, M. Vera, A. J. S. Ares, and Interfaces, "Evaluation of the influence of synthesis conditions on the morphology of nanostructured anodic aluminum oxide coatings on Al 1050," vol. 18, p. 100448, 2020.
[12] K. J. N. Y. T. Chang, "The nature of glass remains anything but clear," vol. 29, 2008.
[13] W.-F. Wu and B.-S. J. A. s. s. Chiou, "Properties of radio frequency magnetron sputtered silicon dioxide films," vol. 99, no. 3, pp. 237-243, 1996.
[14] H.-T. Chou, Y.-C. Chen, C.-Y. Lee, H.-Y. Chang, N.-H. J. S. E. M. Tai, and S. Cells, "Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency," vol. 166, pp. 45-51, 2017.
[15] B. Fang et al., "Optical properties of vanadium dioxide thin film in nanoparticle structure," vol. 47, pp. 225-230, 2015.
[16] P. M. Ajayan and S. Iijima, "Carbon nanotubule enclosing a foreign material," ed: Google Patents, 1995.
[17] H. Seifi, T. Gholami, S. Seifi, S. M. Ghoreishi, M. J. J. o. A. Salavati-Niasari, and A. Pyrolysis, "A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials," p. 104840, 2020.
[18] G. A. J. M. b. Somorjai, "From surface materials to surface technologies," vol. 23, no. 5, pp. 11-29, 1998.
[19] H. T. Grahn, Introduction to semiconductor physics. World Scientific Publishing Company, 1999.
[20] A. P. J. s. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," vol. 271, no. 5251, pp. 933-937, 1996.
[21] D. Ma, C. Lee, F. Au, S. Tong, and S. J. S. Lee, "Small-diameter silicon nanowire surfaces," vol. 299, no. 5614, pp. 1874-1877, 2003.
[22] X. Lü, W. Shen, and J. J. J. o. a. p. Chu, "Size effect on the thermal conductivity of nanowires," vol. 91, no. 3, pp. 1542-1552, 2002.
[23] R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. J. N. l. Espinosa, "Elasticity size effects in ZnO nanowires− a combined experimental-computational approach," vol. 8, no. 11, pp. 3668-3674, 2008.
[24] W. J. P. B. C. M. Qi, "Size effect on melting temperature of nanosolids," vol. 368, no. 1-4, pp. 46-50, 2005.
[25] T. Thangeeswari, G. Parthipan, and S. J. M. T. P. Shanmugan, "Synthesize of gadolinium-doped ZnO nano particles for energy applications by enhance its optoelectronic properties," 2020.
[26] V. A. Coleman and C. Jagadish, "Basic properties and applications of ZnO," in Zinc oxide bulk, thin films and nanostructures: Elsevier, 2006, pp. 1-20.
[27] T. Dhakal et al., "Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system," vol. 86, no. 5, pp. 1306-1312, 2012.
[28] H.-w. Yu, J. Wang, X.-a. Yan, J. Wang, P.-f. Cheng, and C.-j. J. O. Xia, "Effect of surfactants on the morphology and photocatocatalytic properties of ZnO nanostructures," vol. 185, pp. 990-996, 2019.
[29] C.-W. Hun, C.-C. Chang, S.-H. Chen, C. C. Chen, A. Fang, and Y.-L. J. C. I. Kuo, "Transparent sapphire substrates with tunable optical properties by decorating with nanometric oxide on porous anodic aluminum oxide patterns," vol. 44, no. 9, pp. 10898-10906, 2018.
[30] G. Bengough and J. J. B. P. Stuart, "The anodic oxidation of aluminium and its alloys as a protection against corrosion," vol. 223994, 1923.
[31] G. J. T. s. f. Thompson, "Porous anodic alumina: fabrication, characterization and applications," vol. 297, no. 1-2, pp. 192-201, 1997.
[32] C. R. J. C. o. M. Martin, "Membrane-based synthesis of nanomaterials," vol. 8, no. 8, pp. 1739-1746, 1996.
[33] M. J. M. S. Lohrengel and E. R. Reports, "Thin anodic oxide layers on aluminium and other valve metals: high field regime," vol. 11, no. 6, pp. 243-294, 1993.
[34] H. Masuda and K. J. s. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," vol. 268, no. 5216, pp. 1466-1468, 1995.
[35] H. Masuda and M. J. J. J. o. A. P. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask," vol. 35, no. 1B, p. L126, 1996.
[36] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. J. A. P. L. Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina," vol. 71, no. 19, pp. 2770-2772, 1997.
[37] O. Jessensky, F. Müller, and U. J. A. p. l. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," vol. 72, no. 10, pp. 1173-1175, 1998.
[38] V. Parkhutik and V. J. J. o. P. D. A. P. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," vol. 25, no. 8, p. 1258, 1992.
[39] G. Thompson, G. J. T. o. m. s. Wood, and technology, "Corrosion: aqueous processes and passive films," vol. 23, no. 5, pp. 205-208, 1983.
[40] A. Li, F. Müller, A. Birner, K. Nielsch, and U. J. J. o. a. p. Gösele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," vol. 84, no. 11, pp. 6023-6026, 1998.
[41] J. L. Vossen, W. Kern, and W. Kern, Thin film processes II. Gulf Professional Publishing, 1991.
[42] 莊達人 電子工程, VLSI 製造技術. 高立出版, 2003.
[43] T. M. Rodgers, H. Zhao, H. N. J. J. o. V. S. Wadley, S. Technology A: Vacuum, and Films, "Vapor deposition on doublet airfoil substrates: Coating thickness control," vol. 33, no. 6, p. 061509, 2015.
[44] M. Lelis et al., "Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering," vol. 377, p. 124906, 2019.
[45] T. Zhang, H. Zhang, L. Yang, B. Wang, Y. Wu, and T. J. E. a. Takamura, "The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity," vol. 53, no. 18, pp. 5660-5664, 2008.
[46] R. Chodun et al., "The state of coating–substrate interfacial region formed during TiO2 coating deposition by Gas Injection Magnetron Sputtering technique," p. 126092, 2020.
[47] A. Fujishima and K. J. n. Honda, "Electrochemical photolysis of water at a semiconductor electrode," vol. 238, no. 5358, pp. 37-38, 1972.
[48] E. Biaduń, N. Nowak, J. Kowalska, K. Miecznikowski, and B. J. C. Krasnodębska-Ostręga, "Organic matter decomposition before arsenic speciation analysis of water sample–“Soft decomposition” using nano-photocatalysts," vol. 207, pp. 481-488, 2018.
[49] S. Saini, Y. T. Prabhu, B. Sreedhar, P. K. Prajapati, U. Pal, and S. L. J. M. Jain, "Visible light induced α-amino acid synthesis from carbon dioxide using nanostructured ZnO/CuO heterojunction photocatalyst," p. 100777, 2020.
[50] T. Trang, L. Tu, T. Man, M. Mathesh, N. Nam, and V. J. C. P. B. E. Thu, "A high-efficiency photoelectrochemistry of Cu2O/TiO2 nanotubes based composite for hydrogen evolution under sunlight," vol. 174, p. 106969, 2019.
[51] R. Wang et al., "Enhanced visible-light-driven photocatalytic sterilization of tungsten trioxide by surface-engineering oxygen vacancy and carbon matrix," vol. 348, pp. 292-300, 2018.
[52] S. Bhardwaj, D. Dogra, B. Pal, and S. J. S. E. Singh, "Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation," vol. 194, pp. 618-627, 2019.
[53] Y. Wu et al., "Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species," vol. 40, no. 5, pp. 691-702, 2019.
[54] G. Zhang, Y. Liu, Z. Hashisho, Z. Sun, S. Zheng, and L. J. A. S. S. Zhong, "Adsorption and photocatalytic degradation performances of TiO2/diatomite composite for volatile organic compounds: Effects of key parameters," p. 146633, 2020.
[55] B. J. C. Cullity, London, "Elements of X-ray Diffraction, Adison–Wesley Publ," 1967.
[56] Hung-Ching Lee, "Effect of Nanometer Oxide on the Optical Properties of Glass Substrate with Porous Anodic Aluminum Oxide Film," 2019.

QR CODE