簡易檢索 / 詳目顯示

研究生: 陳廷嘉
Ting-Chia Chen
論文名稱: 利用光譜晶片技術實現溶液中極低濃度微量成分精準檢測之研究及開發
Research and Development of Precise Detection for Components in Ultra Low Concentration Solutions Using Spectrochip Technology
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 微型光譜儀半導體製程水質檢測二氧化矽低濃度檢測
外文關鍵詞: Miniature Spectrometer, Semiconductor Manufacturing Process, Water Quality Detection, Silica, Low Concentration Detection
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化矽是一種天然生成的化合物,許多礦物、岩石和土壤中都存在著二氧化矽,二氧化矽廣泛用於許多工業應用,包括玻璃、陶瓷、水泥和電子產品的生產,正常情況下,水中的二氧化矽對人體是安全的,因為它無毒,少量攝取並不會對人們的健康構成危害,但若攝入高含量的二氧化矽會增加患腎結石的風險。在工業領域,水中的二氧化矽會對工業有影響,尤其是在用水作為冷卻劑或清潔劑的工業和商業環境中,會在設備和機械上形成水垢和沈積物,會降低設備的效率,二氧化矽沉積會使所有管道流動都會受到摩擦損失的影響,這種能量損失機制取決於流體粘度、管道的形狀和大小以及流速等流動特性,二氧化矽沉積也會造成設備損壞,並導致昂貴的維修或更換費用。在半導體領域,二氧化矽是半導體製造中廣泛使用的材料,水中不必要的二氧化矽會導致在半導體表面形成不需要的二氧化矽層,這會影響它們的電性能並降低它們的品質,這在微電子製造中尤其嚴重,即使是少量的二氧化矽污染也會導致嚴重的缺陷和產量損失。
    為了解決上述問題,開發了用於水質檢測的近紅外光光譜儀檢測系統,相較於傳統光譜儀,近紅外光光譜儀檢測系統大大減小了體積及重量。而本論文中以近紅外光光譜儀檢測系統為研究開發的對象,對水中的二氧化矽進行量測。實驗結果顯示自製紅光光檢測光譜儀對矽的量測檢量線 R2 = 0.9926,檢測極限 (Limit of Detection, LOD) = 1.392241 ppb,定量極限 (Limit of Quantification, LOQ) = 4.640805 ppb,實驗證實近紅外光光譜儀檢測系統能夠準確判斷水中二氧化矽元素的濃度,且經過多次測量,實驗值保持穩定。
    相較於傳統光譜儀,近紅外光光譜儀檢測系統準確性高、降低成本等等的好處,且採用半導體的製程,可使大小重量大大的降低,使隨身攜帶檢測成為可能,讓檢測場域不會限制於實驗室中,對未來各式應用及量測的研究有明顯的幫助。


    Silicon dioxide is a naturally occurring compound found in many minerals, rocks, and
    soils. It is widely used in various industrial applications, including the production of glass,ceramics, cement, and electronic products. In the industrial sector, silicon dioxide in water can have an impact, especially in industrial and commercial environments where water is used as a coolant or cleaning agent. It can lead to the formation of scale and deposits on equipment and machinery, reducing their efficiency. In the semiconductor field, silicon dioxide is widely used as a material in semiconductor manufacturing. Unnecessary silicon dioxide in water can lead to the formation of unwanted silicon dioxide layers on the semiconductor surface, affecting their electrical performance and reducing their quality.
    To address these issues, a self-made portable water quality testing near-infrared spectroscopy system has been developed. Compared to traditional spectrometers, the near-infrared spectroscopy system significantly reduces the size and weight. This study focuses on the research and development of a near-infrared spectroscopy system for the measurement of silicon dioxide in water. Experimental results show that the self-made red light detection spectrometer has a measurement linearity R2 = 0.9926 Limit of Detection (LOD) = 1.392241 ppb and Limit of Quantification (LOQ) = 4.640805 ppb for silicon.
    Compared to traditional spectrometers, the self-made near-infrared spectroscopy system offers benefits such as speed, high accuracy, and cost reduction. It adopts semiconductor processes, significantly reducing its size and weight, making portable detection possible. This allows testing to be conducted outside the confines of a laboratory, providing significant assistance in various future applications and research in measurements.

    致謝 摘要 ABSTRACT 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機 1.4 論文架構 第二章 方法與理論 2.1 光譜 2.2 光譜儀工作原理 2.3 光與檢測物關係 2.4 分析與驗證 第三章 實驗系統架構與設計 3.1 實驗光譜儀介紹 3.2 光學系統設計 3.3 繪圖軟體設計與成品加工 3.4 組裝零組件 3.5 近紅外光光譜儀檢測系統穩定度測試 第四章 實驗流程與結果 4.1 二氧化矽標準品配置 4.2 光源穩定度測試 4.3 量測二氧化矽樣品 4.4 建立機台量測檢量線 4.5 實驗結果分析 第五章 未來改善 第六章 結論 參考文獻

    [1] C. Yang, Z.-Y. Zhou, Y. Li, S.-K. Liu, Z. Ge, G.-C. Guo, and B.-S. Shi, “Angularspectrum-dependent interference,” Light: Science & Applications, vol. 10, no. 1, p.217, 2021.
    [2] C. Wang, X. Jiang, W. R. Sweeney, C. W. Hsu, Y. Liu, G. Zhao, B. Peng, M. Zhang,
    L. Jiang, A. D. Stone et al., “Induced transparency by interference or polarization,”
    Proceedings of the National Academy of Sciences, vol. 118, no. 3, p. e2012982118, 2021.
    [3] Y. Hu, Z. Wang, X. Wang, S. Ji, C. Zhang, J. Li, W. Zhu, D. Wu, and J. Chu, “Efficient full-path optical calculation of scalar and vector diffraction using the bluestein method,” Light: Science & Applications, vol. 9, no. 1, p. 119, 2020.
    [4] F. S. Ruggeri, B. Mannini, R. Schmid, M. Vendruscolo, and T. P. Knowles, “Single molecule secondary structure determination of proteins through infrared absorption
    nanospectroscopy,” Nature Communications, vol. 11, no. 1, p. 2945, 2020.
    [5] A. Miles, R. W. Janes, and B. A. Wallace, “Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review,” Chemical Society Reviews, vol. 50, no. 15,pp. 8400–8413, 2021.
    [6] S. Zhao, G. Lioliou, and A. Barnett, “X-ray spectrometer with a low-cost sic photodiode,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 887, pp. 138–143, 2018.
    [7] T. Shan, X. Hou, X. Yin, and X. Guo, “Organic photodiodes: device engineering and
    applications,” Frontiers of Optoelectronics, vol. 15, no. 1, p. 49, 2022.
    [8] R. Georgel, K. Grygoryev, S. Sorensen, H. Lu, S. Andersson-Engels, R. Burke, and
    58 D. O'Hare, “Silicon photomultiplier—a high dynamic range, high sensitivity sensor
    for bio-photonics applications,” Biosensors, vol. 12, no. 10, p. 793, 2022.
    [9] Y. Wang, X. Fu, Y. Chen, L. Qin, Y. Ning, and L. Wang, “The development progress of surface structure diffraction gratings: From manufacturing technology to spectroscopic applications,” Applied Sciences, vol. 12, no. 13, p. 6503, 2022.
    [10] P. Ma, Y. Jia, A. Liu, J. Chen, M. Wang, J. Li, and W. Zheng, “30-gbps directly modulated semiconductor lasers based on surface high-order gratings,” IEEE Photonics Technology Letters, vol. 33, no. 4, pp. 197–200, 2021.
    [11] A. Li, C. Yao, J. Xia, H. Wang, Q. Cheng, R. Penty, Y. Fainman, and S. Pan, “Advances in cost-effective integrated spectrometers,” Light: Science & Applications, vol. 11, no. 1, p. 174, 2022.
    [12] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginner's guide to cyclic voltammetry,” Journal of chemical education, vol. 95, no. 2, pp. 197–206, 2018.
    [13] Å. K. Pettersson and B. Karlberg, “Simultaneous determination of orthophosphate and silicate in brackish water,” Analytica chimica acta, vol. 378, no. 1-3, pp. 183–189, 1999.
    [14] C. X. Galhardo and J. C. Masini, “Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry,” Analytica Chimica Acta, vol. 417, no. 2, pp. 191–200, 2000.
    [15] Y. Yokoyama, T. Danno, M. Haginoya, Y. Yaso, and H. Sato, “Simultaneous determination of silicate and phosphate in environmental waters using pre-column derivatization ion-pair liquid chromatography,” Talanta, vol. 79, no. 2, pp. 308–313, 2009.
    [16] L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, and J. W. Carnahan, “Acousto-optic 59 tunable filters: fundamentals and applications as applied to chemical analysis techniques,” Progress in Quantum Electronics, vol. 28, no. 2, pp. 67–87, 2004.
    [17] Y. Pang, K. Zhang, and L. Lang, “Review of acousto-optic spectral systems and applications,” Frontiers in Physics, vol. 10, p. 1319, 2022.
    [18] J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Optical Engineering, vol. 49, no. 11, pp. 113 203–113 203, 2010.
    [19] B. Das and V. Chandra, “Fiber-mzi-based fbg sensor interrogation: comparative study with a ccd spectrometer,” Applied Optics, vol. 55, no. 29, pp. 8287–8292, 2016.
    [20] B. K. Cha, C. R. Kim, S. Jeon, R. K. Kim, C.-W. Seo, K. Yang, D. Heo, T.-B. Lee, M.- S. Shin, J.-B. Kim et al., “X-ray characterization of cmos imaging detector with high resolution for fluoroscopic imaging application,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 731, pp. 315–319, 2013.
    [21] A.-Q. Jiang, K.-Y. Zang, H.-T. Tu, J.-K. Chen, W.-J. Lu, O. Yoshie, X.-P. Wang, X.- D. Xiang, Y.-P. Lee, B. Chen et al., “Ultrahigh-resolution spectrometer based on 19 integrated gratings,” Scientific Reports, vol. 9, no. 1, pp. 1–7, 2019.
    [22] K.-Y. Zang, Y. Yao, E.-T. Hu, A.-Q. Jiang, Y.-X. Zheng, S.-Y. Wang, H.-B. Zhao, Y.-M. Yang, O. Yoshie, Y.-P. Lee et al., “A high-performance spectrometer with two spectral channels sharing the same bsi-cmos detector,” Scientific Reports, vol. 8, no. 1, p. 12660, 2018.
    [23] B. Liu, J. Zhao, and L. Liu, “Applicability of beer’s law in particulate system from random to regular arrangement: A numerical evaluation,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 276, p. 107938, 2021.

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 2025/08/10 (校外網路)
    全文公開日期 2025/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE