簡易檢索 / 詳目顯示

研究生: 何軾
Shih - Ho
論文名稱: 以氧化矽及氧化鋅雙散射層作為光捕捉結構應用於矽基薄膜太陽電池之研究
Dual Scattering Layers of silica/ZnO as Light Trapping Structure for Silicon Thin Film Solar Cell
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 周賢鎧
Shyan-kay Jou
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 單一分散氧化矽膠體氧化鋅光散射層霧度光捕捉透明導電氧化物矽薄膜太陽能電池
外文關鍵詞: monodisperse colloidal silica, zinc oxide, light scattering layer, light trapping, diffuse transmittance, transparent conductive oxide, silicon thin film solar cell
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   首先利用溶膠-凝膠法製備氧化矽散射層,藉改變氨水濃度、乙醇比例、分散劑劑量等氧化矽膠體合成條件,探討製備出的氧化矽球體散射層表面形態及其透光特性。實驗結果顯示,當控制氧化矽粒徑為400 nm、分散劑PVP-K30重量百分比15 %、及兩階段旋轉塗佈轉速為3000 rpm/4000 rpm時,可製作出粒子均勻分佈透光率達90 %以上且對600 nm波長的光透過散射率達30 %的氧化矽散射層。
      接著於氧化矽粒子層上沉積具粗糙化散射結構的(110)晶面擇優生長之ZnO薄膜,完成雙散射層結構。最後則採用濺鍍或化學氣相沉積法完成TCO薄膜的製備。
    元件試作部份,我們利用射頻電漿輔助化學氣相沉積裝置製作單接面非晶矽薄膜太陽能電池,藉由p+型窗口層的厚度改變及退火處理後得到元件特性如,開路電壓、短路電流及填充係數分為784 mV、14.9 mA/cm2及34.2 %,光電轉換效率4.0 %。


      Silica/ZnO dual scattering layers coated on glass substrates were applied for fabrication of silicon thin film tandem solar cell. First of all, sol-gel method was used to make mono-dispersed silica particle layer as the silica light scattering layer. Preparation conditions was the concentration of ammonium hydroxide, the proportion of ethanol and the quantity of dispersing agent were systematically varied so as to investigate the morphological and optical properties of the silica scattering layer. Through spin-on a gel with silica particles 400 nm in size dispersed in 15 wt% of PVP-K30 dispersant using two step spin at 3000 rpm/4000 rpm, an effective silica scattering layer was established. Then, ZnO layer with the characteristic hexagonal (110) pyramidal surface structure was deposited on the scattering layer. Finally, TCO layer such as Ga-doped ZnO or Al-doped ZnO was grown on the ZnO layer to constitute a complete TCO glass.
      For device, we fabricate amorphous silicon p-i-n thin film solar cell by RF-PECVD system. The short-circuit current, open-circuit voltage and fill factor of device were 14.9 mA/cm2, 784 mV and 34.2 %, respectively. The optoelectronic conversion efficiency of 4.0 % was achieved.

    摘 要 1 Abstract 2 誌 謝 3 目錄 4 圖 索 引 8 表索引 12 第一章 緒論 13 1.1 前言 13 1.2 研究動機與目的 14 第二章 理論基礎與文獻回顧 17 2.1薄膜太陽電池原理 17 2.1.1半導體二極體 17 2.1.2太陽光頻譜響應 18 2.1.3光電轉換效率 19 2.2非晶矽薄膜太陽電池 20 2.2.1非晶矽薄膜之基本特性 20 2.2.2非晶矽薄膜的摻雜 22 2.3 非晶碳化矽薄膜 23 2.4非晶矽薄膜製程及薄膜成長機制 24 2.4.1以電漿輔助化學氣相沉積法製備非晶矽薄膜 24 2.4.2矽甲烷電漿分解程序 25 2.4.3非晶矽薄膜成長機制 27 2.5 非晶矽薄膜太陽能電池結構 28 2.5.1 Superstrate結構 28 2.5.2 透明導電氧化物窗口層 31 2.6 光捕捉結構 33 2.6.1 TCO之光捕捉效應 33 2.6.2以氧化矽作為散射層之光捕捉結構 34 2.7氧化矽散射層之製備 35 2.7.1氧化矽膠體(colloidal silica) 35 2.7.2 氧化矽粒徑大小之控制 36 第三章 實驗方法與步驟 39 3.1實驗流程圖 39 3.2 實驗藥品及氣體 40 3.3 實驗裝置 43 3.4 分析儀器 45 3.4.1紫外光/可見光光譜儀 (UV/VIS) 45 3.4.3太陽光模擬器 (solar simulator) 47 3.4.5 橢圓偏光儀 (Ellipsometer) 50 3.4.6場發射掃瞄式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 51 3.4.7 霍爾量測儀 (Hall measurement) 52 3.5 實驗步驟 55 3.5.1玻璃基材清洗 55 3.5.2 氧化矽散射層的製備 55 3.5.3 氧化鋅散射層的製備 56 3.5.4 TCO鍍膜 56 3.5.5成長非晶矽薄膜太陽能電池元件 57 第四章 實驗結果與討論 58 4.1製備氧化矽散射層之探討 58 4.1.1次微米氧化矽粒徑的液態法成長控制 58 4.1.2 以噴塗法製備氧化矽散射層的探討 61 4.1.3使用PVP-K90作為分散劑製備氧化矽散射層的探討 63 4.1.4使用PVP-K30作為分散劑製備氧化矽散射層的探討 66 4.1.5旋轉塗佈製程對氧化矽散射層形式的影響 68 4.2氧化鋅鋁透明導電薄膜的光電性質探討 72 4.3散射TCO玻璃的光學性質及表面形態探討 74 4.4散射TCO玻璃之電池試作探討 78 4.4.1 P+層厚度對電池效率之影響 78 4.4.2P+層退火對電池效率之影響 82 第五章 結論 84 參考文獻 86

    1. Yang, J., A. Banerjee, and S. Guha, Applied Physics Letters 70.22 (1997): 2975-2977.
    2. J. Meier, U. Kroll, S. Benagli, L. Fesquet, J. Steinhauser, D. Borello, J-B. Orhan, Y. Djeridane, E. Vallat-Sauvain, M. Fecioru-Morariu, B. Mereu, J. Kalas, J. Hoetzel, P. Losio, M. Kupich, O. Kluth, T. Eisenhammer, D. Weidmanc, S. Marjanovic and G. Kohnke , Energy Procedia 15 (2012): 179-188.
    3. Luque, Antonio, and Steven Hegedus, eds. Handbook of photovoltaic science and engineering. Wiley. com, 2011.
    4. Mullerova, J., Jurecka, S., Sutta, P., and Mikula, M., Acta Phys. Slovaca., Vol.55, pp.351-359 (2005)
    5. Kasap, S.O., Principles of Electronic Materials and Devices, pp.81 (2006)
    6. Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Bailat, J., Prog. Photovolt: Res. Appl., Vol.12 pp.113-142 (2004)
    7. Spear, W.E. and P.G. Lecomber, Solid State Commun., Vol.17, pp.1193-1196 (1975)
    8. Lee, C.H., J.W. Jeon, and K.S. Lim, J. Appl. Phys., Vol.87, pp.8778-8785 (2000)
    9. Myong, S.Y., S.S. Kim, and K.S. Lim, Appl. Phys. Lett., Vol.84, pp. 5416-5418 (2004)
    10. Ogawa, S., Okabe, M., Itoh, T., Yoshida, N., and Nonomura, S., Thin Solid Films, Vol.516, pp.758-760 (2008)
    11. Karabay, I., Mod. Phys. Lett. B., Vol.20, pp.1591-1596 (2006)
    12. Miyahara, H., Takai, M., Nishimoto, T., Kondo, M., and Matsuda, A., Sol. Energy Mater. & Sol. Cells., Vol.74, pp.351-356 (2002)
    13. Matsuda, A., Takai, M., Nishimoto, T., and Kondo, M., Sol. Energy Mater. & Sol. Cells., Vol.78, pp.3-26 (2003)
    14. Matsuda, A., Plasma Phys Contr Fusion., Vol.39, pp.431-436 (1997)
    15. Matsuda, A., Jpn. J. Appl. Phys., Vol.43, pp.7909-7920 (2004)
    16. Perrin, J., J. Non-Cryst. Solids., Vol.137, pp.639-644 (1991)
    17. Kawase, M., Masuda, T., Nagashima, M., Maki, T., Miyamoto, Y., and Hashimoto, K., Jpn. J. Appl. Phys., Vol.33, pp.3830-3836 (1994)
    18. Robertson, J. and M.J. Powell, Thin Solid Films, Vol.337, pp.32-36 (1999)
    19. Robertson, J. , J. Non-Cryst. Solids., Vol.266, pp.79-83 (2000)
    20. Carabe, J. and J.J. Gandia, Opto-Electron. Rev., Vol.12, pp.1-6 (2004)
    21. Minami, Tadatsugu., Semiconductor Science and Technology 20.4 (2005): S35.
    22. J. Muller, B. Rech, J. Springer, M. Vanecek, Solar Energy 77.6 (2004): 917-930.
    23. J. Steinhauser, J.-F. Boucher, E. Omnes, D. Borrello, E. Vallat-Sauvain, G. Monteduro, M. Marmelo, J.-B. Orhan, B. Wolf, J. Bailat, S. Benagli, J. Meier, U. Kroll, Thin Solid Films 520.4 (2011): 1218-1222.
    24. S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, C. Ballif, Solar Energy Materials and Solar Cells 105 (2012): 46-52.
    25. Hongsingthong, Aswin, et al. , Jpn. J. Appl. Phys. Appl. 51.10 (2012).
    26. Kolbe, G., Dissertation, Jena, 1956
    27. LaMer, Victor K., and Robert H. Dinegar., Journal of the American Chemical Society 72.11 (1950): 4847-4854.
    28. T. Matsoukas and E. Gulari, Journal of Colloid And Interface Science, vol. 124, no. 1, pp. 252–261, 1988.
    29. T. Matsoukas and E. Gulari, Journal of Colloid And Interface Science, vol. 132,no. 1, pp. 13–21, 1989.
    30. G. H. Bogush, M. A. Tracy, and C. F. Zukoski, Journal of Non-Crystalline Solids, vol. 104, no. 1, pp. 95–106, 1988.
    31. G.H. Bogush, M.A. Tracy, and C.F. Zukoski, IV, J. Non-Cryst. Solids104,95 (1988).
    32. W. Stober and A. Fink, J. Colloid Interface Sci.26,62 (1968).
    33. Tan, C. G.; Bowen, B. D.; Epstein, N. J. Colloid Interface Sci. 1987, 118, 290.
    34. Rahman, Ismail Ab, and Vejayakumaran Padavettan., Journal of Nanomaterials 2012 (2012): 8.
    35. Shanthi, S., C. Subramanian, and P. Ramasamy. , Crystal Research and Technology 34.8 (1999): 1037-1046.
    36. Shan, F. K., and Y. S. Yu. , Journal of the European Ceramic Society 24.6 (2004): 1869-1872.

    QR CODE