簡易檢索 / 詳目顯示

研究生: 李元凱
Yuan-Kai Lee
論文名稱: 偏高嶺土聚合膠體工程性質之研究
Study on Engineering Properties of Polycondensated Metakaolin Pastes
指導教授: 張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
口試委員: 張建智
Jiang-Jhy Chang
楊仲家
Chung-Chia Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 無機聚合物鹼激發高嶺土矽鈉比
外文關鍵詞: geopolymer, alkali-activated, kaolin, SiO2/Na2O
相關次數: 點閱:282下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討下列因素對於無機聚合物其工程性質之影響:(1) 燒高嶺土之煅燒溫度與持溫時間;(2) 矽、鋁離子之析出數量;(3) 矽鈉重量比;(4) 液固比;(5) 高嶺土原礦。
    研究結果顯示:(1) 以熱分析與X光繞射分析可判別高嶺土有效之煅燒溫度與持溫時間,煅燒溫度須達到700℃以上並持溫3小時才可完全脫羥基而形成偏高嶺土。(2) 在相同濃度下,添加不同體積的10 N KOH鹼激發劑溶液,液固比為5:1時,鋁離子會較矽離子先達到最高析出莫耳數量。(3) 在不同矽鈉重量比條件下所製成之無機聚合物,當矽鈉重量比為0.4時,其放熱效應大且快速硬固,導致不良之工作度,易產生大量孔洞與熱裂縫,所以其工程性質較差;而當矽鈉重量比為0.7與1時,皆可改變液固比而達到最佳強度,故同時考慮配比中之矽鈉重量比及液固比而達到最佳鍵結比例時,即可獲得最佳工程性質。(4) 在相同配比下,以不同產地的偏高嶺土拌合製成無機聚合物時,其工程性質不盡相同,會依高嶺土的物理及化學性質不同而有所差異,所以不能以水泥水化中之水灰比及水膠比之觀念來套用在無機聚合反應,必須將所有反應材料之基本性質與化學分子式了解後,再依前述觀念設計配比。(5) 無機聚合物漿體擁有優良的抗壓強度及低熱傳導係數,故於防火絕熱與耐高溫等應用條件上皆具有相當的發展與研究空間。


    This study explores the influences of the following factors on the engineering properties of geopolymer: (1) sintering temperature and time of kaolin, (2) amounts of silicon and aluminum ions released from kaolin, (3) weight ratio of SiO2 to Na2O (SiO2/Na2O), (4) ratio of liquid volume to solid weight (liquid/solid), and (5) raw materials.
    Results are summarized as the following: (1) Effective sintering temperature and time was differentiated by thermal analysis and XRD. The dehyrdoxylation of kaolin did not occur until the heating temperature was maintained at 700 °C for 3 hours. (2) When liquid/solid=5, by adding different volumes of the alkali activation of 10 N KOH solutions, the released aluminum ions reached the maximum amounts earlier than the silicon ions. (3) When SiO2/Na2O=0.4, the geopolymer had large heat release and rapid stiffening, inducing poor workability, pores, and thermal cracks. Its engineering properties were thus bad. However, when SiO2/Na2O=0.7 or 1, compressive strength of the geopolymer was optimized by changing the liquid/solid ratios. Therefore, better engineering properties of the geopolymer can be achieved by adjusting both the SiO2/Na2O and liquid/solid in a mix design to get a better bond. (4) Engineering properties of the geopolymer varied with the physical and chemical properties of the kaolin of different origins. Therefore, the concepts of water-cement ratio or water-cementitious materials ratio are not applicable on the geopolymerization. It is suggested that the materials properties of the reactants should be determined and the chemical reactions during the geopolymerization should be clarified prior to the mix design. (5) Geopolymer had high compressive strength and low thermal conductivity, suggesting its potential use on fire-resistance and thermal insulation.

    總目錄 中文摘要 英文摘要 致謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究內容及流程 第二章 文獻回顧 2.1 前言 2.2 無機聚合物之發展 2.3 無機聚合物之反應材料與其影響無機聚合性質之因素 2.3.1 高嶺土及偏高嶺土 2.3.2 鹼性激發劑之種類與濃度 2.3.3 鹼金屬矽酸鹽溶液之種類 2.4 無機聚合物之形成機理 2.4.1 反應機制 2.4.2 無機聚合物之結構 2.5 影響無機聚合物形成與性能之因素 2.5.1 矽鈉比(SiO2/Na2O) 2.5.2 液固比(liquid/solid) 第三章 試驗計畫 3.1 試驗內容 3.2 試驗材料 3.3 試驗儀器設備 3.4 試驗變數及項目 3.5 無機聚合物試體製作與規劃 3.5.1 拌和程序 3.5.2 無機聚合物試體製作 3.6 試驗方法 3.6.1 基本性質試驗 3.6.2 非破壞性試驗 第四章 結果與討論 4.1 判別高嶺土與偏高嶺土之條件 4.1.1 熱差/質差分析 4.1.2 X光繞射分析 4.2 矽、鋁離子析出量對無機聚合物之影響 4.3 無機聚合物之抗壓強度 4.3.1 矽鈉重量比(SiO2/Na2O) 4.3.2 液固比(liquid/solid) 4.4 無機聚合物之動彈性模數與動剪力模數 4.4.1 矽鈉重量比(SiO2/Na2O) 4.4.2 液固比(Liquid/Solid) 4.5 無機聚合物漿體之超音波波速 4.5.1 矽鈉重量比(SiO2/Na2O) 4.5.2 液固比(Liquid/Solid) 4.6 無機聚合物漿體之熱傳導係數 4.6.1 矽鈉重量比(SiO2/Na2O) 4.6.2 液固比(Liquid/Solid) 4.7 不同產地之高嶺土原礦對於無機聚合物漿體材料力學性質與非破壞試驗之影響 4.7.1 抗壓強度 4.7.2 動彈與動剪力模數 4.7.3 超音波波速分析 4.7.4 熱傳導係數分析 4.8 煅燒溫度不全之高嶺土對於無機聚合物工程性質之影響 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    1.H. Xu, J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals”, International Journal Minerals Process, Vol. 59, pp. 247-266, 2000.
    2.J. Davidovits, “Geopolymer chemistry and applications a practical and scientific approach to sustainable development”, Editors: J. Davidovits, 2nd edition, Institut Géopolymère, Saint-Quentin, France, pp. 3-18, 2008.
    3.D. M. Roy, “Alkali-activated cements: opportunities and challenges”, Cement and Concrete Research, Vol. 29, No.2, pp.249-254, 1999.
    4.黃伯齡,「礦物熱差分析鑑定手冊」,科學出版社,北京,第516-518 頁,1987年。
    5.C. Klein and C. S. Hurlbut, Jr. 原著,黃怡禎 譯,「礦物學(Manual of Mineralogy 21st edition)」,地球科學文教基金會,第534 頁,2000年。
    6.韓敏芳,「非金屬礦物材料制備與工藝」,化學工業出版社,北京,第208-215頁,2004年7月。
    7.C. Kaps, and A. Buchwald, “Property controlling influences on the generation of geopolymeric based on clay”, Geopolymer 2002 International Conference, Melbourne, Australia, CD-ROM, 2002.
    8.J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and A. Schwartzman, “The potential use of geopolymeric materials to immobilise toxic metals:Part Ⅱ. minerals and characteristics”, Minerals Engineering, Vol. 12, No. 1, pp. 75-91, 1999.
    9.A. K. Chakraborty, “DTA study of preheated kaolinite in the mullite formation region”, Thermochimica Acta , Vol. 398 , No.2 , pp.203-209 , 2003.
    10.曹德光、蘇達根、楊占印、宋國勝,「偏高嶺石的微觀結構與鍵合反應能力」,礦物學報,第二十四卷,第四期,第366-372頁,2004年。
    11.陳秋艷、那琼,「偏高嶺土在我國的潛在應用」,礦業研究與開發,第二十四卷,第四期,第31-33頁,2004年。
    12.W. W. Wendlandt 原著,陳道達 譯,「熱分析(Thermal Analysis)」,渤海堂文化公司,台北市,第271頁,1991年。
    13.J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and G. C. Lukey, “The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers”, Cemical Engineering Journal, Vol. 89, pp. 63-73, 2002.
    14.鄭水林、李楊、許霞,「升溫速度對煅燒高嶺土物化性能的影響」,非金屬礦,第二十四卷,第六期,第15-16頁,2001年。
    15.劉琨、彭同江、孫红娟,「煅燒高嶺土活性的析因實驗分析」,礦產綜合利用,第六期,第17-19頁,2003年。
    16.鄭水林、李楊、許霞,「煅燒時間對煅燒高嶺土物化性能影響的研究」,非金屬礦,第二十五卷,第二期,第11-13頁,2002年。
    17.羅永康、馬智、吳傑、齊曉周,「煅燒溫度對高嶺土結構及其氧化鋁浸出率的影響」,化學工業與工程,第二十二卷,第四期,第263-266頁,2005年。
    18.S. D. Wang, K. L. Scrinener, P. L. Pratt, “Factors affecting the strength of alkali-activated slag”, Cement and Concrete Research, Vol. 24, pp.1033-1043, 1994。
    19.J. W. Phair, J. S. J. Van Deventer, “Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process, Vol. 66, pp. 121-143, 2002.
    20.J. G. S. Van Jaarsveld and J. S. J. Van Deventer, “Effect of the alkali metal activator on the properties of fly ash-based geopolymers”, International Engineering Chemical Research, Vol. 38, pp. 3932-3941, 1999.
    21.H. Xu, and J. S. J. Van Deventer, G. C. Lukey, “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures”, International Engineering Chemical Research, Vol. 40, pp. 3749-3756, 2001.
    22.A. c, J. G. Palomob, F. Puertas, “Alkali-activated slag mortars mechanical strength behaviour”, Cement and Concrete Research Vol. 29 ,pp.1313-1321,1999.
    23.J. G. S. Van Jaarsveld and J. S. J. Van Deventer, “The effect of metal contaminants on the formation and properties of waste-based geopolymers”, Cement and Concrete Research 29, pp. 1189-1200, 1999.
    24.J. W. Phair and J. S. J. Van Deventer, “ Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers”, Minerals Engineering, Vol. 14, pp. 289-304, 2001.
    25.戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,國立台北科技大學,2005。(鄭大偉教授指導)
    26.W. Sun, Y. S. Zhang, W. Lin and Z. Y. Liu, “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM”, Cement and Concrete Research, Vol. 34, pp. 935-940, 2004.
    27.H. Xu and J. S. J. Van Deventer, “The geopolymerisation of natural alumino-silicates.”, Proceedings of Geopolymere 99 Second International Conference, Editors: J. Davidovits, R. Davidovits and C. James, Institut Géopolymère, Saint-Quentin, France, pp. 43-64, 1999.
    28.J. Davidovits, “Chemistry of geopolymeric systems terminology. Proceedings of Geopolymere 99 Second International Conference”, Editors: Joseph Davidovits, Ralph Davidovits and Claude James, Institut Géopolymère, Saint-Quentin, France, pp. 9-40, 1999.
    29.P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo and J. S. J. van Deventer, “Geopolymer technology: the current state of the art”, Journal of Material Science, Vol. 42, pp. 2917-2933, 2007.
    30.C. Kunze and R. Gatzweiler and G. Kiebig and J. Davidovits, “Solidification of various radioactive residues by geopolymere with special emphasis on long-term-stability.”, Proceedings of Geopolymer 99 Second International Conference, Editors: J. Davidovits, R. Davidovits and C. James, Institut Géopolymère, Saint-Quentin, France, pp. 211-228, 1999.
    31.J. Davidovits, “Geopolymer chemistry and sustainable development. The poly(sialate) terminology : a very useful and simple model for the promotion and understanding of green-chemistry.”, Geopolymer, Green Chemistry and Sustainable Development Solutions, Editors: J. Davidovits, Institut Géopolymère, Saint-Quentin, France, pp. 9-15, 2005.
    32.P. Duxson, J. L. Provis, G. C. Lukey and J. S. J. van Deventer, “Structural ordering in geopolymers derived from metakaolin. Geopolymer, Green Chemistry and Sustainable Development Solutions”, Editors: Joseph Davidovits, Institut Géopolymère, Saint-Quentin, France, pp. 21-25, 2005.
    33.J. W. Phair, J. S. J. Van Deventer, “Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process, Vol. 66, pp. 121-143, 2002.
    34.丁慶軍、張高展、王紅喜、趙運承、胡曙光,「鋼渣-偏高嶺土體系地聚合物試驗方案與結果」,武漢理工大學學報,第二十九卷,第一期,第18-21頁,2007年。
    35.T. E. Stanton, “Expansion of concrete through reaction between cement and aggregates”, Proceedings of The American Society of Civil Eng, 1940.
    36.C. Z Zhang, A Wang, M. S Tang, and N. S Zhang, “Influence of dimension of test specimen on alkali-aggregate reactive expansion”, ACI Materials Journal, Vol. 96, No. 2, pp. 204-207, 1999.
    37.F. Saint-Pierre, P. Rivard, G. Ballivy, “Measurement of alkali-silica reaction progression by ultrasonic waves attenuation”, Cement and Concrete Research, Vol. 96, pp. 948–956, 2007.
    38.R. N. Swamy, M. M. Al-Asali, “Engineering properties of concrete affected by alkali–silica reaction”, ACI Materials Journal, Vol. 85, No. 5, pp. 367–374, 1988.
    39.L. J. Monette, N. J. Gardner, P. E. Grattan-Bellew, “Residual strength of reinforced concrete beams damaged by alkali-silica reaction- examination of damage rating index method”, ACI Materials Journal, Vol. 99, No. 1, pp. 42–50, 2002.
    40.T. Ahmed, E. Burley, S. Rigden, A. Abu-Tair, “The effect of alkali reaction on the mechanical properties of concrete”, Construction and Building Materials, Vol. 17, No. 2, pp. 123-144, 2003.
    41.吳靖然,「鹼膠凝材料微觀結構與物理性質之研究」,碩士論文,國立成功大學,2006。(陳景文教授指導)

    無法下載圖示 全文公開日期 2013/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE