簡易檢索 / 詳目顯示

研究生: 楊名
Ming Yang
論文名稱: 不飽和夯實紅土之土壤波速、錐頭阻抗及剪力強度之探討
A Study on Soil Velocity, Cone Resistance and Shear Strength of Unsaturated Compacted Lateritic Soil
指導教授: 林宏達
Horn-Da Lin
口試委員: 王建智
Chien-Chih Wang
盧之偉
Chih-Wei Lu
李安叡
An-Jui Li
林宏達
Horn-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 172
中文關鍵詞: 不飽和土壤夯實紅土土壤波速錐頭阻抗剪力強度
外文關鍵詞: Unsaturated Soil, Compacted Lateritic Soil, Soil Velocity, Cone Resistance, Shear Strength
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

夯實後之林口紅土長時處於不飽和狀態,易受降雨及日曬等環境因素影響而改變其土壤內部含水量,進而影響其吸力、強度及模數等工程性質。本研究針對不飽和夯實土壤進行一系列室內試驗,包含超音波暨彎曲元件試驗、無圍壓縮暨小應變量測試驗、室內圓錐貫入試驗及不飽和三軸暨彎曲元件多階加載試驗,並且利用數值分析模擬圓錐貫入試驗以做進一步驗證及探討。然後整合所有試驗和數值分析研究結果,探討基質吸力、土壤波速、錐頭阻抗、剪力強度及模數特性之相互關係。
試驗結果顯示,土壤錐頭阻抗及土壤波速均隨著吸力增加而提升,且兩者呈一線性關係。利用數值分析模擬圓錐貫入試驗,其錐頭阻抗與試驗結果亦有相同趨勢,錐頭阻抗可合理反應基質吸力對於土壤強
度之影響。以此為依據,本研究建立以錐頭阻抗推估無圍壓縮強度之關係式,可供工程參考應用。剪力強度試驗結果顯示,絮凝結構土壤會因飽和吸水體積膨脹,導致土壤強度大幅弱化,且絮凝結構含量越
多,弱化情形會越加明顯。此外,在相同吸力下有效圍壓增加,試體破壞時之軸差強度亦會提升,但視凝聚力則不因圍壓改變而有變化。模數特性試驗結果顯示,試體勁度會隨著吸力增加而提升,且在小應
變範圍(0.001%~0.1%)均有明顯之模數劣化。並且最大楊氏模數無論是由波傳理論推估還是透過無圍壓縮試驗求得,其模數亦隨著吸力上升而增加。


Compacted Linkou lateritic soil is often in an unsaturated state. Environmental factors such as sunlight and rainfall will change the water content of the soil, which will affect its matric suction, strength, and modulus. This study conducted a series of tests on unsaturated compacted soils, including the ultrasonic and bender element test, the unconfined compression test with small strain measurement, the laboratory cone penetration test, and the unsaturated triaxial test with bender element. In addition, numerical analysis was conducted to simulate the con penetration test for further verification and discussion. Then, this study integrated laboratory test and numerical analysis results to study the relationship among the matric suction, the wave velocity, the cone resistance, the shear strength, and the modulus of the soil.
Test results show that a positive linear correlation exists between the cone resistance and the soil velocity while the matric suction increased. Numerical analysis results show that the cone resistance evolution has the same trend with the test results. The cone resistance can reasonably reflect the influence of matric suction on soil strength. Based on the above findings, this study established formulas for estimating the unconfined compression strength by the cone resistance that can be adopted for engineering applications. The test results of the shear strength show that the soil with flocculation structure adsorbed more water upon the saturation process; therefore, the soil strength is significantly weakened. Furthermore, as the percentage of flocculation structure increases, the weakening situation will become more severe. Regarding the increase of effective confining pressure under the same matric suction, the deviator stress at failure will also increase, but the apparent cohesion will not change with the change of confining pressure. The test results of the modulus characteristic show that as the matric suction increases, soil modulus will also increase, and there is obvious modulus deterioration in the small strain range (0.001%~0.1%). The maximum Young's modulus, whether estimated by the wave propagation formula or obtained by the unconfined compression test, also increases with the increase of the matric suction.

論文摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1研究動機與目的 1.2研究內容與架構 第二章 文獻回顧 2.1不飽和夯實土壤之吸力特性及基本性質 2.1.1夯實土壤性質 2.1.2不飽和夯實土壤之吸力特性 2.2不飽和土壤之剪力強度 2.2.1延伸莫爾-庫倫破壞理論 2.2.2不飽和三軸試驗 2.2.3不飽和無圍壓縮暨小應變量測試驗 2.3不飽和土壤之錐頭阻抗 2.3.1室內圓錐貫入試驗 2.3.2圓錐貫入試驗之數值分析 2.4不飽和夯實土壤波速 2.4.1超音波之應用性 2.4.2彎曲元件之應用性 第三章 試驗計畫、設備與方法 3.1試驗計畫及流程 3.2試體製作與土樣性質 3.2.1基本物性試驗、修正夯實試驗與試體製作 3.2.2 飽和三軸試驗 3.2.3吸力特性與乾濕化環境模擬 3.3波速量測試驗 3.3.1超音波試驗 3.3.2彎曲元件試驗 3.4不飽和無圍壓縮與小應變量測 3.5不飽和室內圓錐貫入試驗 3.5.1不飽和室內圓錐貫入試驗設備 3.5.2不飽和室內圓錐貫入試驗步驟 3.6不飽和三軸暨彎曲元件試驗 3.6.1不飽和三軸暨彎曲元件試驗設備 3.6.2不飽和三軸暨彎曲元件多階加載試驗方法 第四章 試驗成果與討論 4.1不飽和夯實土壤基本性質 4.1.1不飽和土壤物理性質與夯實特性 4.1.2不飽和夯實紅土吸力特性 4.1.3飽和三軸試驗結果 4.2夯實土壤超音波暨彎曲元件試驗 4.2.1超音波波速量測結果 4.2.2彎曲元件剪力波速量測結果探討 4.3不飽和土壤之剪力強度試驗 4.3.1不飽和無圍壓縮暨小應變量測結果探討 4.3.2不飽和三軸暨彎曲元件多階加載試驗結果 4.4不飽和室內圓錐貫入試驗 4.4.1不飽和土壤之錐頭阻抗 4.4.2錐頭阻抗之發展趨勢 4.5不同基質吸力下之錐頭阻抗、剪力強度、土壤波速及模數特性 4.5.1以土壤波速推估無圍壓縮強度及土壤模數 4.5.2錐頭阻抗、不飽和剪力強度與土壤波速之關係 第五章 不飽和室內圓錐貫入之數值分析 5.1不飽和室內圓錐貫入數值模擬方法 5.1.1分析軟體簡介 5.1.2土壤模式及參數 5.1.3分析模型建立 5.2不飽和室內圓錐貫入數值分析結果 5.3錐頭阻抗之數值分析與試驗結果比較 第六章 結論與建議 6.1結論 6.2建議 參考文獻

1. 丁楷恩,「不飽和夯實紅土之土壤波速與剪力強度及土壤模數之關係」,碩士論文,國立台灣科技大學營建工程系,(2018)。
2. 王正君,「乾、濕化路徑與夯實狀態對土壤基質吸力之影響」,碩士論文,國立台灣科技大學營建工程系,(2008)。
3. 王旭暉,「以基質吸力觀點探討不飽和夯實紅土無圍壓縮強度與視凝聚力關係」,碩士論文,國立台灣科技大學營建工程系,(2016)。
4. 李豪智,「乾濕化路徑下基質吸力對不飽和夯實紅土應變相依土壤模數之影響」,碩士論文,國立台灣科技大學營建工程研究所,(2016)。
5. 李家豪,「Apparent Cohesion and Small-Strain Soil Modulus of Unsaturated Compacted Lateritic Soil」,碩士論文,國立台灣科技大學營建工程系,(2017)。
6. 李昱成,「以土壤波速與基質吸力探討不飽和夯實紅土視凝聚力與應變相依模數」,碩士論文,國立台灣科技大學營建工程系,(2020)。
7. 林郁博,「不飽和夯實紅土波速與力學性質關係之研究」,碩士論文,國立台灣科技大學營建工程系,(2017)。
8. 周勃翰,「不飽和夯實紅土視凝聚力與吸力特性之試驗探討」,碩士論文,國立台灣科技大學營建工程系,(2015)。
9. 拱祥生,「降雨對不飽和土壤邊坡穩定性之影響研究」,碩士論文,國立台灣科技大學營建工程研究所,(1999)。
10. 拱祥生,「不飽和紅土基質吸力行為及其在工程之應用」,博士論文,國立台灣科技大學營建工程研究所,(2011)。
11. 張宇翔,「以基質吸力與土壤波速探討不飽和夯實紅土之剪力強度及模數特性」,碩士論文,國立台灣科技大學營建工程系,(2019)。
12. 廖志穎,「不飽和路基土壤濕化及剪力模數研究」,碩士論文,國立台灣科技大學營建工程系,(2007)。
13. 龔東慶,「考慮台北沉泥質黏土小應變行為之深開挖地表沉陷分析」,博士論文,國立台灣科技大學營建工程系,(2003)。
14. Atkinson, J. H., Sallfors, G., “Experimental Determination of Soil Properties”, Proceedings of the 10th ECSMFE, Vol. 3, Florence, pp. 915-956, (1991).
15. Cuccovillo, T., and Coop, M. R., “The measurement of local axial strains in triaxial tests using LVDTs.”, Géotechnique, Vol.47, No.1, pp.167-172, (1997).
16. Chan, C. M., “Bender Element Test in Soil Specimens: Identifying the Shear Wave Arrival Time”, Electronic Journal of Geotechnical Engineering, 15,pp. 1263-1276,(2010).
17. Chien, S. C., Teng, F. C., & Ou, C. Y., “Soil Improvement of Electroosmosis with the Chemical Treatment Using the Suitable Operation Process.” Acta Geotechnica 10 (6): 813–820, (2015).
18. Fredlund, D. G., and Morgenstern, N. R., “Stress State Variables for Unsaturated Soil.” Journal of Geotechnical Engineering, ASCE, GT5, Vol.103, pp.447-466, (1977).
19. Fredlund, D. G., Morgenstern, N. R., & Widger, R. A., “The shear strength of unsaturated soils.”, Canadian geotechnical journal, Vol.15, No.3, pp.313-321, (1978).
20. Fredlund, D. G., Rahardjo, H., & Gan, J. K. M., “Non-linearity of strength envelope for unsaturated soils.”, Proc. 6th Int. Conf. Expansive Soils, New Delhi, Vol.1, pp. 49-54, (1986).
21. Fredlund, D. G. and Rahardjo, H., “Soil Mechanics for Unsaturated Soils.”, John Wiley, New York, (1993).
22. Fredlund, D. G. and Rahardjo, H., “Soil Mechanics for Unsaturated Soils.”, John Wiley, New York, (1993).
23. Fredlund, D. G., & Xing, A., “Equations for the soil-water characteristic curve.”, Canadian geotechnical journal, Vol.31, No.4, pp.521-532, (1994).
24. Fern, J., Soga, K., Robert D. J., Sakanoue, T., “Shear Strength and Dilatancy of Unsaturated Silica Sand in Triaxial Compression Tests.”, the 14th international association for computer methods and advances in geomechanics, Japan, (2014)
25. Holtz, R. D., & Kovacs, W. D., “An introduction to geotechnical engineering.”, (1981). 2th edition,Pearson Education.
26. Ho, D. Y. F. and Fredlund, D. G., “A Multistage Triaxial Test for Unsaturated Soils”, Geotechnical Testing Journal, Vol.5, No.1, pp. 18-28, (1982).
27. Jarast, S. P., Ghayommi, M., “Simple Numerical Model to Simulate Penetration Testing in Unsaturated Soils”, the 3rd conference on saturated soils, European, (2016)
28. Krahn, J. and Fredlund, D. G., “On Total, Matric and Osmotic Suction”, Journal of Soil Science, 114(5),339-348, (1972)
29. Lin, H. D., Kung, J. H. S., and Wang, C. C., “Matric Suction and Shear Modulus of Unsaturated Compacted Lateritic Soil Subjected to Drying and Werting”, Abstracts of The Sixth Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, pp.139-140, July 12-15, 2014, Kitakyushu, Japan, (2014).
30. Lin, H. D., Wang, C. C., and Kung, J. H. S., “Wetting and Drying on Matric Suction of Compacted Cohesive Soil”, Proceedings, ISOPE-2015, the 25th International Ocean and Polar Engineering Conference (with CD-ROM), Vol.2, pp.1069-1075, Kona, Big Island, Hawaii, USA, (2015).
31. Laureano, R. H. ,Eduardo, A. S. , Anand, J. P., “Stiffness of intermediate unsaturated soil from simultaneous suction-controlled resonant column and bender element testing”, Engineering Geology Volume 188, Page 10-28, (2015).
32. Lin, H. D., Jiang, Y. S., Wang, C. C., & Chen, H. Y., “Assessment of Apparent Cohesion of Unsaturated Lateritic Soil Using an Unconfined Compression Test.”, Proceedings of Advances in Civil, Environmental, and Materials Research (ACEM’16), (2016).
33. Lin, H. D., Wang, C. H., & Jhou, B. H., “A study of the apparent cohesion and shear strength characteristics of unsaturated compacted lateritic soil”, Journal of Technology, 32(3), 117-185, (2017).
34. Lin, H. D. , Wang, C. C., & Wang, X. H., “A simplified method to estimate the total cohesion of unsaturated soil using an UC test”, Geomechanice and Engineering Volume 16 Issue6, Pages.599-608, (2018).
35. Miller, C. J., Yesiller, N., Yaldo, K., and Merayyan, S., “Impact of Soil Type and Compaction Conditions on Soil Water Characteristic”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.9, pp. 733-742, (2002).
36. Miller, G. A., Collins, R. W., Tan, N. K. and Muraleetharan, K. K., “Cone Penetration Testing in Unsaturated Soils”, Transportation Geotechnics, Vol. 17, pp.85-99, (2018).
37. Nyunt, T.T., Leong, E.C. and Rahardjo, H., “Stress-strain behavior and shear strength of unsaturated residual soil from triaxial tests”, Conference on Unsaturated Soils: Theory and Practice, Thailand, (2011).
38. Ou, C. Y., Lin, C. Y. and Chien, S. C., “On the Mechanism of Soft Clay Being Improved Entirely in the ECT Treament”, Bulletin of Engineering Geology and the Environment, 79(7), pp.3869-3877, (2020).
39. Shen, S. L., and Mirua, J., “Soil Fracturing of the Surrounding Clay During Deep Mixing Column Installation.”, Soils and Foundations, 39(5), pp.13-22,(1999)
40. Senthilmurugan, T., & Ilamparuthi, K., “Study on Compaction Characteristics and Strength through Ultrasonic Method.”, Advances in Pavement Engineering, pp.1-12, (2005).
41. Teng, F., Sie, Y. C. and Ouedraogo, C., “Strength Improvement in Silty Clay by Microbial –Induced Calcite Precipitation”, Bulletin of Engineering Geology and the Environment, 80, pp.6359-6371, (2021).
42. Viggiani, G., & Atkinson, J. H., “Stiffness of fine-grained soil at very small strains.”, Géotechnique, Vol.45, No.2, pp.249-265, (1995).
43. Walker, J., and Yu, H. S., “Adaptive Finite Element Analysis of Cone Penetration in Clay”, Acta Geotechnica Vol.1,pp. 43-57,(2006)
44. Wang, C. C., Lin, H. D., Li, A. J. and Ting, K. E., “Assessment of the Unconfined Compression Strength of Unsaturated Lateritic Soil Using the UPV”, Geomechanics and Engineering Vol.23, pp. 339-349, (2020)
45. Yang, S. R., Lin, H. D. Kung, J. H. S. and Liao, J. Y., “Shear Wave Velocity and Suction of Unsaturated Soil Using Bender Element and Filter Paper Method”, Journal of GeoEngineering, Vol.3, No.2, pp. 67-74, (2008)

無法下載圖示 全文公開日期 2024/08/10 (校內網路)
全文公開日期 2024/08/10 (校外網路)
全文公開日期 2024/08/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE