簡易檢索 / 詳目顯示

研究生: 費宥傑
FEI,YU-CHIEH
論文名稱: 以噴霧熱裂解法製備非晶生物活性玻璃粉末之最佳化
Preparation bioactive glasses by spray pyrolysis method with optimization of its quenching process
指導教授: 周育任
Yu-Jen Chou
口試委員: 周育任
Yu-Jen Chou
施劭儒
Shao-Ju Shih
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 生物活性玻璃噴霧熱裂解法非晶結構
外文關鍵詞: Bioactive glass, Spray pyrolysis, Amorphous
相關次數: 點閱:333下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生物活性玻璃與其它生醫陶瓷材料相比,其浸泡在人體體液時能夠生成氫氧基磷灰石(Hydroxyapatite),故具有骨頭修復能力,以58S比例之生物活性最佳。現今以溶膠-凝膠法為常用製備生物活性玻璃方法,其屬批次生產,故需要較長製備時間為其缺點。因此本實驗使用噴霧熱裂解法合成58S生物活性玻璃,能克服溶膠-凝膠缺點,使之達到量產化。

噴霧熱解法為一階段製程,但在製備生物活性玻璃過程中會受到熱處理影響晶體結構,並降低其生物活性。本研究透過控制三段不同熱處理溫度設定,能穩定製備非晶生物活性玻璃之最佳化熱處理溫度,並同時改變前驅液濃度,探討晶體結構。另外比較四乙氧基矽烷與四醋酸矽,做為不同矽之前驅物差異。前驅物溶液使用熱重分析儀判別其熱裂解溫度。粉體分析使用X光繞射儀以及聚焦型離子束顯微鏡,依序探討粉體晶體結構以及表面形貌。在體外生物活性測試將取製備後的粉體浸泡於模擬人體體液中,使用X光繞射儀及傅立葉轉換紅外線光譜儀分析其生物活性。最後依據不同熱處理溫度製備出非晶生物活性玻璃影響及生物活性進行探討。

最後,本實驗成功地利用熱處理溫度為575、100、25℃合成出58S非晶生物活性玻璃並量測其性質。


Bioactive glasses (BG) has outstanding bone regeneration than other bioactive ceramics, especially the 58S BG. When BG soaking in body fluid were form hydroxyapatite (HA) and which has good bioactive.
Sol-gel process is one of the most popular procedures for synthesis BG. However, drawbacks of long preparation time and discontinuous processing make that difficult to be mass produced. Using spray pyrolysis (SP) to synthesis BG can be fast synthesis time and mass production. Although SP is one step process, heat treatment will reduce bioactive due to crystal structures. Thus, in this study presented SP synthesis amorphous BG, which were under different heat treatments and use different silicon precursor.
The precursor solution has to characterized by thermogravimetric analysis to obtain its decomposition temperature. The crystallographic structure, morphology and chemical composition of BG specimens were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy, respectively. In addition, in vitro bioactivity were characterized by FTIR and X-ray diffraction. Compare with powder crystal structure and bioactive by heat treatment. Finally, 58S BG has been successfully synthesis by using heat treatment with 575, 100, 25°C, respectively. Which has outstanding bioactive in vitro test.

Abstract VI 致謝 VII 目錄 VIII 圖目錄 XII 表目錄 XV 第一章 研究介紹 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 生物活性材料 3 2.1.1 生醫玻璃陶瓷 3 2.1.2 三鈣磷酸鹽 4 2.1.3 氫氧基磷灰石 4 2.1.4 生物活性玻璃 5 2.2 生物活性玻璃 6 2.2.1 生物活性簡介 6 2.2.2 生物活性生成機制 10 2.2.3 生物活性玻璃組成 11 2.2.4 矽前驅物 13 2.2.5 界面活性劑 15 2.4 鍛燒溫度影響 15 2.5 製程方法 16 2.5.1 傳統玻璃熔融製程法 16 2.5.2 溶膠-凝膠法 17 2.5.3 史托伯法 18 2.5.4 噴霧乾燥法 19 2.6 噴霧熱裂解法 21 2.6.1 噴霧熱解介紹 22 2.6.2 噴霧熱解裝置設計種類 23 2.6.3 顆粒形成機制 24 第三章 實驗方法 26 3.1 實驗流程及實驗設計 26 3.2 實驗使用藥品 29 3.3 儀器設備 30 3.4 樣品製備之流程 31 3.5 體外生物活性試驗 33 3.6 樣品性質及分析方法 34 3.6.1 熱重分析儀 34 3.6.2 X光繞射儀 35 3.6.3 傅立葉轉換紅外線光譜儀 36 3.6.4 場發射雙束型聚焦離子束顯微鏡 37 3.6.5 細胞存活率 38 第四章 實驗結果 40 4.1 前驅液熱重損失分析 40 4.2 不同熱處理溫度製備58S 42 4.2.1 晶相分析 42 4.2.2 形貌觀察、元素及粒徑分析 44 4.3 不同濃度製備58S 50 4.3.1 晶相分析 50 4.3.2 形貌觀察、元素及粒徑分析 50 4.4 不同矽之前驅物 54 4.4.1 晶相分析 54 4.4.2 形貌觀察、元素及粒徑分析 54 4.5 體外生物活性評估 56 4.5.1 晶相分析 56 4.5.2 鍵結結構分析 57 4.6 細胞存活率 58 第五章 實驗討論 60 5.1 鍛燒溫度造成結晶性 60 5.2 結晶以及非晶結構進行體外生物活性比較 61 5.3 比較不同鍛燒溫度之生物相容性 63 5.4 四醋酸矽做為系矽之前驅物 64 第六章 結論 65 第七章 未來工作 66 第八章 參考文獻 67

[1] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., (1991) 74 1487-1510.
[2] L.L. Hench, D.L. Wheeler, D.C. Greenspan, Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. Technol., (1998) 13 245-250.
[3] S.-J. Shih, Y.-J. Chou, I.C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, J. Nanopart. Res., (2012) 14 1299.
[4] N.I.o. Health, https://www.nibib.nih.gov/science-education/science-topics/biomaterials, 2017.
[5] T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, S. Higashi, Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application, Bull. Inst. Chem. Res. Kyoto Univ., (1982) 60 260-268.
[6] H. Oonishi, L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, S. Mizokawa, Comparative bone growth behavior in granules of bioceramic materials of various sizes, J. Biomed. Mater, (1999) 31-43.
[7] I. Akin, G. Goller, Processing Technologies for Bioceramic Based Composites, Handb. Bioceram. Biocompos., (2015) 639-666.
[8] H.H. Horch, R. Sader, C. Pautke, A. Neff, H. Deppe, A. Kolk, Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws, Int. J. Oral Maxillofac. Surg., (2006) 35 708-713.
[9] R. Detsch, H. Mayr, G. Ziegler, Formation of osteoclast-like cells on HA and TCP ceramics, Acta Biomater., (2008) 4 139-148.
[10] M. Kamitakahara, C. Ohtsuki, T. Miyazaki, Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition, J. Biomater. Appl., (2008) 23 197-212.
[11] B. Liu, D.-x. Lun, Current Application of β-tricalcium Phosphate Composites in Orthopaedics, Orthop. Surg., (2012) 4 139-144.
[12] M. Vallet-Regí, J.M. González-Calbet, Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem., (2004) 32 1-31.
[13] L.L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med., (2006) 17 967-978.
[14] J. Hum, A.R. Boccaccini, Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review, J. Mater. Sci. Mater. Med., (2012) 23 2317-2333.
[15] H. van de Belt, D. Neut, W. Schenk, J.R. van Horn, H.C. van der Mei, H.J. Busscher, Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review, Acta Orthop. Scand., (2001) 72 557-571.
[16] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res., (1971) 5 117-141.
[17] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by sol-gel processing, Journal of applied biomaterials : an official journal of the Society for Biomaterials, (1991) 2 231-239.
[18] D. Meleleo, V. Picciarelli, Effect of calcium ions on human calcitonin. Possible implications for bone resorption by osteoclasts, BioMetals, (2016) 29 61-79.
[19] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne, J. Guicheux, Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1, J. Bone Miner. Res., (2009) 24 1856-1868.
[20] A. Bari, N. Bloise, S. Fiorilli, G. Novajra, M. Vallet-Regí, G. Bruni, A. Torres-Pardo, J.M. González-Calbet, L. Visai, C. Vitale-Brovarone, Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration, Acta Biomater., (2017) 55 493-504.
[21] P. Naruphontjirakul, A.E. Porter, J.R. Jones, In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles, Acta Biomater., (2018) 66 67-80.
[22] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, (2011) 32 2757-2774.
[23] D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, G.N. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone, (2003) 32 127-135.
[24] E.M. Carlisle, Essentiality and Function of Silicon, in: G. Bendz, I. Lindqvist, V. Runnström-Reio (Eds.) Biochemistry of Silicon and Related Problems, Springer US, Boston, MA, 1978, pp. 231-253.
[25] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, (2005) 26 4847-4855.
[26] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int., (2017) 43.
[27] E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles, Characterisation of antibacterial copper releasing degradable phosphate glass fibres, Biomaterials, (2005) 26 2247-2254.
[28] A. Balamurugan, G. Balossier, D. Laurent-Maquin, S. Pina, A.H.S. Rebelo, J. Faure, J.M.F. Ferreira, An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system, Dent. Mater., (2008) 24 1343-1351.
[29] S.-J. Shih, W.-L. Tzeng, R. Jatnika, C.-J. Shih, K.B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2015) 103 899-907.
[30] K. Tohamy, I. Soliman, A. Metawa, M. Aboelnasr, Synthesis, Characterization and Bioactive Study of Borosilicate Sol-Gel Glass, Nature and Science, (2015) 13 145.
[31] R.A. Assink, B.D. Kay, Sol-gel kinetics I. Functional group kinetics, J. Non-Cryst. Solids, (1988) 99 359-370.
[32] B.M. Novak, Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers, Adv. Mater., (1993) 5 422-433.
[33] R. Aelion, A. Loebel, F. Eirich, Hydrolysis of Ethyl Silicate*, J. Am. Chem. Soc., (1950) 72 5705-5712.
[34] K. Kajihara, Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses, J. Australas. Ceram. Soc, (2013) 1 121-133.
[35] B. Karmakar, G. De, D. Ganguli, Dense Silica Microspheres From Organic and Inorganic Acid Hydrolysis of TEOS, J. Non-Cryst. Solids, (2000) 272 119-126.
[36] B. Lei, X. Chen, Y. Wang, N. Zhao, C. Du, L. Fang, Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses, Biomedical Materials, (2010) 5 054103.
[37] K.C.Chen, Sol-gel processing of silica I. The role of the starting compounds,J. Non-Cryst. Solids, (1986) 227-237.
[38] C. Wu, J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus, (2012) 2 292-306.
[39] Y. Wang, X. Chen, Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method, Mater. Lett., (2017) 189 325-328.
[40] B.-J. Hong, S.-J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceram. Int., (2017) 43 S771-S775.
[41] B.-J. Hong, C.-W. Hsiao, F.F. Bakare, J.-T. Sun, S.-J. Shih, Effect of Acetic Acid Concentration on Pore Structure for Mesoporous Bioactive Glass during Spray Pyrolysis, Materials (Basel), (2018) 11 963.
[42] L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin, Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater., (2007) 55 3305-3313.
[43] A.R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, J. Chevalier, Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics, Faraday Discuss., (2007) 136 27-44; discussion 107-123.
[44] J. Liu, X. Miao, Sol–gel derived bioglass as a coating material for porous alumina scaffolds, Ceram. Int., (2004) 30 1781-1785.
[45] J. Kraxner, M. Michalek, A.R. Romero, H. Elsayed, E. Bernardo, A.R. Boccaccini, D. Galusek, Porous bioactive glass microspheres prepared by flame synthesis process, Mater. Lett., (2019) 256 126625.
[46] R.A. Martin, S. Yue, J.V. Hanna, P.D. Lee, R.J. Newport, M.E. Smith, J.R. Jones, Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, (2012) 370 1422-1443.
[47] C. Vichery, J.-M. Nedelec, Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications, Materials (Basel), (2016) 9 288.
[48] A. Lukowiak, J. Lao, J. Lacroix, J.-M. Nedelec, Bioactive glass nanoparticles obtained through sol–gel chemistry, Chem. Commun., (2013) 49 6620-6622.
[49] G.K. Pouroutzidou, G.S. Theodorou, E. Kontonasaki, I. Tsamesidis, A. Pantaleo, D. Patsiaoura, L. Papadopoulou, J. Rhoades, E. Likotrafiti, C.B. Lioutas, K. Chrissafis, K.M. Paraskevopoulos, Effect of ethanol/TEOS ratios and amount of ammonia on the properties of copper-doped calcium silicate nanoceramics, J. Mater. Sci. Mater. Med., (2019) 30 98.
[50] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., (1968) 26 62-69.
[51] O. Tsigkou, S. Labbaf, M.M. Stevens, A.E. Porter, J.R. Jones, Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells, Adv Healthc Mater, (2014) 3 115-125.
[52] A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: An overview, Food Res. Int., (2007) 40 1107-1121.
[53] L.-G. Chen, Y.-H. Huang, Y.-J. Chou, Preparation and characterization of spray-dried granulated bioactive glass micron spheres, International Journal of Applied Ceramic Technology, (2021) n/a.
[54] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Adv. Colloid Interface Sci., (2015) 223 40-54.
[55] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean J. Chem. Eng., (2010) 27 1621-1645.
[56] H. Das, N. Debnath, A. Toda, T. Kawaguchi, N. Sakamoto, S. Manjura Hoque, K. Shinozaki, H. Suzuki, N. Wakiya, Controlled synthesis of dense MgFe2O4 nanospheres by ultrasonic spray pyrolysis technique: Effect of ethanol addition to precursor solvent, Adv. Powder Technol., (2018) 29 283-288.
[57] H.S. Kang, Y.C. Kang, H.Y. Koo, S.H. Ju, D.Y. Kim, S.K. Hong, J.R. Sohn, K.Y. Jung, S.B. Park, Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution, Materials Science and Engineering: B, (2006) 127 99-104.
[58] Y.-J. Chou, H.S. Ningsih, S.-J. Shih, Preparation, characterization and investigation of antibacterial silver-zinc co-doped β-tricalcium phosphate by spray pyrolysis, Ceram. Int., (2020) 46 16708-16715.
[59] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, J. Am. Ceram. Soc., (1993) 76 2707-2726.
[60] J. Leng, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion, Chem. Soc. Rev., (2019) v. 48 pp. 3015-3072-2019 v.3048 no.3011.
[61] T.K. Vo, W.-S. Kim, S.-S. Kim, K.S. Yoo, J. Kim, Facile synthesis of Mo/Al2O3–TiO2 catalysts using spray pyrolysis and their catalytic activity for hydrodeoxygenation, Energy Convers. Manage., (2018) 158 92-102.
[62] D.S. Jung, T.H. Hwang, J.H. Lee, H.Y. Koo, R.A. Shakoor, R. Kahraman, Y.N. Jo, M.-S. Park, J.W. Choi, Hierarchical Porous Carbon by Ultrasonic Spray Pyrolysis Yields Stable Cycling in Lithium–Sulfur Battery, Nano Lett., (2014) 14 4418-4425.
[63] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Adv. Powder Technol., (2011) 22 1-19.
[64] S. Bose, C. Chevallier, S. Ould Saad Hamady, D. Horwat, J.-F. Pierson, P. Boulet, T. Gries, T. Aubert, N. Fressengeas, Elaboration of high-transparency ZnO thin films by ultrasonic spray pyrolysis with fast growth rate, Superlattices Microstruct., (2021) 156 106945.
[65] C. Zheng, Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy, Mater. Sci., 2015.
[66] D.L. Wheeler, E.J. Eschbach, R.G. Hoellrich, M.J. Montfort, D.L. Chamberland, Assessment of resorbable bioactive material for grafting of critical-size cancellous defects, J. Orth. Res., (2000) 18 140-148.
[67] J. Serra, P. González, S. Liste, C. Serra, S. Chiussi, B. León, M. Pérez-Amor, H.O. Ylänen, M. Hupa, FTIR and XPS studies of bioactive silica based glasses, J. Non-Cryst. Solids, (2003) 332 20-27.
[68] P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials, (2004) 25 2941-2948.
[69] D. Drescher, G. Orts-Gil, G. Laube, K. Natte, R.W. Veh, W. Österle, J. Kneipp, Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects, Anal. Bioanal. Chem., (2011) 400 1367.
[70] B.K. Coltrain, L.W. Kelts, N.J. Armstrong, J.M. Salva, Silicon tetraacetate as a sol-gel precursor, J. Sol-Gel Sci. Technol., (1994) 3 83-90.

QR CODE