簡易檢索 / 詳目顯示

研究生: 黃俞齊
Yu-Chi Huang
論文名稱: 氧化鋅奈米桿之缺陷控制及其氣體感測性質之研究
Studies on the efect control and the gas sensing properties of ZnO-nanorods
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 曾堯宣
Yao-Hsuan Tseng
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 噴霧裂解法水熱法氧化鋅奈米桿表面缺陷氣體感測
外文關鍵詞: Spray pyrolysis, Hydrothermal method, ZnO nanorod, surface defects, gas sensor.
相關次數: 點閱:487下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩部分,第一部分為利用噴霧裂解法成長氧化鋅種晶膜,再藉由水熱法製備氧化鋅奈米桿,將其做為氣體感測元件,應用於檢測乙醇氣體(Ethanol gas)。第二部分主要藉由材料的改質以提升感測效能。本研究著重於氧化鋅晶格中的缺陷組成,對於感測特性的影響。
    在乙醇氣體感測中,氣體和表面的氧離子反應,而氧離子的生成和氧化鋅中的氧缺陷有關,所以我們利用退火處理及電漿改質來改變材料中的缺陷組成,並以PL及XPS觀察氧化鋅中缺陷的變化,以期改善氧化鋅奈米桿的感測靈敏度。
    氧化鋅奈米桿在螢光光譜的分析下擁有兩個較明顯的波峰,分別為~380 nm(UV放光)以及450~700 nm(缺陷放光),其中缺陷放光的強度越強,表示奈米桿缺陷濃度越高,而這些缺陷經熱處理後皆有明顯的下降,但是經由氬氣退火後的奈米桿缺陷濃度,會隨著退火溫度的不同而有波鋒shift的現象,並且存在一最佳退火溫度450OC,
    有效的提升氧化鋅奈米桿表面缺陷濃度,並提高感測的靈敏度。本研究也利用氧氣電漿處理的方式,提高表面吸附的氧離子以及相關的缺陷濃度,成功的提升了氧化鋅奈米桿的感測靈敏度。


    This research project consists of two parts. In the first part, we deposited a ZnO thin film by spray pyrolysis, and then grew ZnO nanorods on the seed film by hydrothermal method. The resultant samples were then studied for ethanol gas sensing. In the second part, the ZnO nanorods were plasma-treated to modify the surfaces in order to improve the gas sensitivity. Our study focuses on the effect of defect composition on the gas sensing property.
    For ethanol gas sensing, the ethanol molecule reacts with the surface oxide ion, and the formation of oxide ions can be correlated to the oxygen defects in ZnO. The defect composition can be varied by the thermal annealing as well as the plasma treatment. The changes in defect composition can be monitored by X-ray Photoelectron Spectroscopy (XPS) and Photoluminescence (PL) spectroscopy.
    There are two peaks appeared in the PL spectrum, which are located at ~380 nm (UV emission) and 450~700 nm (defect emission), respectively. A large defect emission peak indicates a high defect concentration in the ZnO nanorod. In general, the defect concentration can be suppressed by thermal annealing in various atmospheres. However, annealing in Ar will increase the defect concentration and also cause a shift in the defect emission peak to an amount depending on the annealing temperature. An optimum temperature of 450OC was found for annealing in Ar to achieve the best ethanol gas sensitivity. We also can employ the oxygen plasma treatment to raise the concentration of surface adsorbed oxide ions, and to enhance the gas sensitivity of ZnO nanorods.

    第一章 緒論 1.1 前言 1.2半導體型氣體感測器 1.3. 氣體感測器種類 1.4. 研究動機 第二章 文獻回顧 2.1 氧化鋅(Zinc Oxide,ZnO)簡介 2.2 晶體結構 2.2-1 氧化鋅晶體結構 2.2.2 氧化鋅的缺陷(defects) 2.3 半導體感測器 2.3.1氣體感測器的分類 2.3.2半導體式感測原理 2.3.3氧化鋅的氣體感測 2.4 氧化鋅特性 2.4.1 氧化鋅的導電性質 2.4.2 氧化鋅之螢光光學性質 第三章 實驗方法及步驟 3.1 實驗藥品 3.2 實驗儀器 3.3 實驗流程 3.4 指叉(梳狀)電極之製作 3.5 種晶層製備 3.6 氧化鋅奈米桿製備 3.7 氣體感測 3.8 ZnO奈米桿之熱處理 3.9 ZnO奈米桿之電漿改質 3.10 奈米結構分析與性質 第四章 結果與討論 4.1不同水熱濃度及時間對奈米桿的影響 4.2 氧化鋅奈米桿對於Ethanol vapor之感測 4.2.1 操作溫度對桿測乙醇氣體的影響 4.2.2 奈米桿長度對感測乙醇氣體的影響 4.2.3 退火處理對感測乙醇氣體的影響 4.2.4 氬氣退火處理對缺陷濃度的影響 A、 不同退火溫度下 B、 不同退火時間下 4.2.5 電漿處理對感測乙醇氣體的影響 4.2.6 氧氣電漿處理對缺陷濃度的影響 A、 不同改質時間 第五章 結論

    [1] A.W.Snow,W.R.Barger,M.Klusty,H.Wohltjen and N.L.Jarvis , Langmuir,2,513(1986) .
    [2] 施正雄,科學發展月刊,27,1184,(1999) .
    [3] K.Arshak,E.Moore,G.M.Lyons,J.Harris and S.Clifford,Sensor Review,24,181(2004).
    [4] L. Schmidt-Mende,J. L. MacManus-Driscoll,Materialstoday,10,40(2007).
    [5] C. Jagadish,S. Pearton,Zinc Oxide Bulk,Thin Films and Nanostructures,Elsevier (2006).
    [6] S.J.Peaeton,D.P.Norton,K.Ip,Y.W.Heo and T.Steiner,Progress in materials Science,50,293(2005)
    [7] D. Wang,X. Meng,Z. Chen and Q. Fu,Physica E,40,852 (2008).
    [8] C. Jagadish and S. Pearton,Zinc oxide bulk,thin films and nanostructures : processing, properties and applications,(2006)
    [9] N. W. Emanetoglu,C. Gorla,Y. Liu,S. Liang and Y. Lu,Mater. Sci. Semiconductor Process. 2,247(1999).
    [10] Y. M. Chiang,D. Birnie and W. D. Kingery,Physical Ceramics,John Wiley & Sons,Inc (1997).
    [11] Kröger and F. A.,The Chemistry of Imperfect Crystals. 2nd Edition,North Holland,Amsterdam (1974)
    [12] A.F.Kohan,G.Ceder and D.Morgan,Physical Review,61,15019 (2000)
    [13] K.H.Tam,C.K.Cheung,Y.H.Leung,A.B.Djurisic,C.C.Ling, C.D.Beling,S. Fung,W.M.Kwok,W.K.Chan,D.L.Phillips,L.Ding and W.K.Ge,Journal of Physical Chemistry B,110,20865 (2006)
    [14] Anderson Janotti and Chris G. Van de Walle,J. Cryst. Growth,287,58 (2006)
    [15] Chien-Ting Kao,The design and the properties of semiconductor nanoparticles zinc oxide gas sensor(2000,Thesis)
    [16] 鄭元政,Development of semiconductor type CO sensor by using thick-film screen printing method,(2000,thesis)
    [17] A. Z. Sadek,Student Member,S. Choopun,W. Wlodarski,Member,Samuel J. Ippolito, and K. Kalantar-zadeh,IEEE Sensors Journal,Vol. 7,No. 6 (2007)
    [18] M.S. Wagh et al.,Sensors and Actuators B 115 128-133 (2006)
    [19] K.J. Laidler,Chemical Kinetics,second ed.,TMG Publi. Com. Ltd., chapter 6,pp. 310–311.
    [20] R .C. Singh ,O. Singh,M.P. Singh and P. S. Chandi,Sensors and Actuators B: Chemical 135,352-357 ( 2008)
    [21] S.T. Shishiyanu et al.,Sensors and Actuators B,107,379-386 (2005)
    [22] G.Sberveglieri,Gas Sensor Principles,Operation and Deveopments pp.48 (1992)
    [23] L. Liao,H. B. Lu,J. C. Li,H. He,D. F. Wang,D. J. Fu and C. Liu,J. Phys. Chem.C,111,1900 (2007).
    [24] Abu Z. Sadek,S. Choopun,W. Wlodarski,Samuel J. Ippolito and K. Kalantar-zadeh ,IEEE Sensors Journal,7,919 (2007)
    [25] T. Gao,T.H. Wang,Appl.Phy. A,80,p.1451-1454 (2005)
    [26] R. Ghosh,G.K. Paul,and D. Basak,Materials Research Bulletin Vol 40,Issue 11,p.1905-1914( 2005 )
    [27]. 劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,全華科技,(2003)
    [28] S.Y.Myong,S.J.Balk,C.H Lee,W.Y.Cho and K.S.Lim,Japanese Journal of Applied Physics,36,L1078 (1997)
    [29] M.T. Mohammad,A.A. Hashimb and M.H. Al-Maamory,Materials Chemistry and Physics,99,382 (2006)
    [30] Y. Zhang,Y. Liu,L. Wu,H. Li,L. Han,B. Wang and E. Xie ,appl. Surf. Sci.,255,4801-4805 (2009)
    [31] R. Ghosh et al.,Materials Research Bulletin,40,1905-1914 (2005)
    [32] You-Lo Hsieh,M. Wu,Division of Textiles,University of California, Davis,California,95616,J . Appl .Poly. Sci.,43,2067-2082(1991)
    [33] H-W Ra and Y-H Im,,Nanotechnology,19,485710 (2008)
    [34] X. Liu,X. Hu,H. Cao,R. P. H. Chang,J. Appl. Phys.,95,3141 (2004).
    [35] K. Vanheusden,W.L. Warren,C.H. Seager,D.R. Tallant,,J.A. Voigt and B.E. Gnade,J.Appl. Phys.,79,7983 (1996)
    [36] K. Vanheusden,C.H. Seager,W.L.Warren,D.R. Tallant,J. Caruso,M.J.H. Smith,T.T.Kodas,,J. Lumin. 75,11(1997)
    [37] P. Fons,K. Iwata,S. Niki,A. Yamada and K. Matsuda,J. Cryst. Growth ,627,p.201–202 (1999).
    [38] A. Ortiz,C. Falcony,J. Hernandez,M. Garcia and J.C. Alonso,Thin Solid Films,293,103(1997)
    [39] Zhou,H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B.
    K.; Kaczmarczyk, G.; Hoffmann, A. Appl. Phys. Lett.,80,210. (2002)
    [40] Norberg, N. S.; Gamelin, D. R. J. Phys. Chem. B , 109, 20810(2005)
    [41] Hong-Ying Wang and Jerome B. Lando,Langmuir,10,790(1994)
    [42] D. Perednis and L. J.Gauckler,Journal of Electroceramics,14,103 (2005)
    [43] Y. Sun,D. Jason Riley,Michael N. R. Arshfold,,J. Phys. Chem. B 110,15186 (2006).
    [44] D. Wang,C. Song,Z. Hu, W. Chen and X. Fu,Materials Letters 61,205 (2007).
    [45] Dortmund Data Bank Software and Separation Technology,(n.d.). DDBST. Saturated Vapor Pressure,Germany。:Dipl.-Chem. Jörg Krafczyk ,Dr. Jens Ahlers,Ivan Hunecker,Mathias Eisel,Doris Fischer,Bärbel Krentscher,Dipl.-Biol. Kerstin Beyer.Retrieved May,,13,2010,from the World Wide Web: http://www.ddbst.com/
    [46] 張木彬、李灝銘,國立中央大學環境工程研究所,「電漿處理技術於環境工程之應用與發展趨勢」。
    [47] H. Yasuda and C. R. Wamg,J. Polym. Sci., Polym. Chem. Ed.,16,743 (1973)
    [48] 劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,全華科技,(2003)
    [49] H. Chon and J. Pajares,Journal of Catalyst,14,257(1969)
    [50] H. Ogawa,M . Nishikawa and A .Abe,J. Appl. Phys.,53,4448 (1982)
    [51] A.P.Lee,Sensors and Actuator B,Vol.60,35-42 (1999)
    [52] P. T . Mosely,Sensors and Actuator B,Vol.6,149-156 (1992)
    [53] R Bene,G Kiss,I. V. Perczel,F A Meyer and F Re´ti, Vacuum,vol 50,number 3–4,p 331-337 (1998)
    [54] J. Xu,J. Han,Y. Zhang,Y. Sun and B. Xie,Sensors and Actuators B,132,334–339 (2008)
    [55] N. Barsan,U. Weimar,J. Electroceram.,7,143-167 (2001)
    [56] A. Poppl,G. Volkel,Esr and photo-Esr,Phys. Status Solidi A,125, 571-581 (1991)
    [57] F. Tuomisto,K. Saarinen,D.C. Look,G.C. Farlow,Phys. Rev. B, 72,085206 (2005)
    [58] M.K. Lee,H.F. Tu,J. Appl.Phys.,101,126103 (2007)
    [59] L. Zhao,J.S. Lian,Y.H. Liu and Q. Jiang,Trans. Nonferr. Met. Soc.,18,145-149 (2008)
    [60] X.Q. Wei,B.Y. Man,M. Liu,C.S. Xue,H.Z. Zhuang and C. Yang, Physica B,388,145-152 (2007)
    [61] K.T. Roro,J.K. Dangbegnon,S. Sivaraya,A.W.R. Leitch and J.R. Botha,J. Appl. Phys.,103,053516 (2008)
    [62] W. Cheng,P. Wu,X. Zou and T. Xiao,J. Appl. Phys.,100,054311 (2006)
    [63] T. M. Borseth,B. G. Svensson,A.Y. Kuznetsov,P. Klason,Q.X. Zhao and M.Willander,Appl. Phys.Lett.,89,262112 (2006)
    [64] C. H. Tsai,W. C. Wang,F. L. Jenq,C. C. Liu,C. I. Hung and M. P. Houng,J. Appl. Phys.,104,053521(2008)
    [65] S.A. Studenikin,N. Golego and M. Cocivera,J. Appl. Phys.,84, 2287-2294 (1998)
    [66] N. G. Kakazey,L. A. Klockov,I. I. Timofeeva,T. V. Sreckovic,B. A. Marinkovic and M. M. Ristic,Cryst. Res. Technol.,Vol. 34,Issue 7,p.859 – 866(1999)
    [67] A.e. rakhshani,J. kokaj and j. Mathew,B. Appl. Phys. A 86, 377–383 (2007)
    [68] L.H. Quang et al.,J. Cryst. Growth,287,157-161 (2006)
    [69] S. Lee,Y Jeong,S. Jeong,J. Lee,M. Jeon and J. Moona, Superlattices and Microstructures,44,761-769 (2008)
    [70] L. Chen,Z. Liu,S. Bai,K . Zhang,D.Li,A.Chen and C. C. Liu, Sensors and Actuators B,143,620-628 (2010)
    [71] C . Wu,Q. Zhao,X. An,J.Zhang,J. Jiang,化學通報 2005年 第68卷
    [72] H. S. Kang,J.S. Kang,J. W. Kim and S. Y. Le,phys. stat. sol.(c)1,No.10,2550–2553 (2004)
    [73] H. S. Kang,J. W. Kim,S. H. Lim,H. W. Chang,G. H. Kim,J. H. Kim,S. Y. Lee,Superlattices and Microstructures,39,193-201 (2006)
    [74] J. D. Ye,S. L. Gu,F. Qin,S.M. Zhu,S.M. Liu,X. Zhou,W. Liu,L. Q. Hu,R. Zhang,Y. Shi and Y.D. Zheng,Appl. Phys. A,81, 759 (2005)
    [75] Q. Li,Y. Chen,X. Zhang,Y. Su and C. Jia,J. Phys. Chem. Sol.,70,1482-1486 (2009)
    [76] J. Yang,X. Liu,L. Yang,Y. Wang,Y. Zhang,J. Lang,M. Gao and M. Wei,J. Alloys Compd.,485,743-746 (2009)
    [77] H.T. Cao,Z.L. Pei,J. Gong,C. Sun,R.F. Huang and L.S.Wen,J. Solid State Chem.,177,1480 (2004)
    [78] J. M. Lee,K. M. Chang,S. W. Kim,C. Huh,I. H. Lee and S. J. Park,J.Appl. Phys.,87,7667 (2000).
    [79] I. Nagatomo,R. Uchino,Y. Li,M. Shuzo,I. Yamada and J. J. Delaunay , IEEJSMAS,,Vol. 129,No. 9,pp.307-311 (2009)
    [80] J. Lee,K.K. Kim and S.J. Parka,appl.phys.lett,Vol .78,No. 24., 3842 (2001)
    [81] M. Liu and H. K. Kim,Appl. Phys. Lett.,Vol. 84,No. 2,12 (2004)

    無法下載圖示 全文公開日期 2015/06/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE