簡易檢索 / 詳目顯示

研究生: 徐才竣
Tsai-chun Hsu
論文名稱: 以光學顯微鏡量測熱效應對發光二極體之影響
Measurement of Thermal Effect on Light Emitting Diodes by Optical Microscopy
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 楊恆隆
none
趙良君
Liang-Chiun Chao
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 光學顯微鏡熱效應發光二極體
外文關鍵詞: Optical Microscopy, Thermal Effect, Light Emitting Diodes
相關次數: 點閱:223下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體一般都以外部發光量的變化來探討其發光品質,我們將應用順向偏壓法去量測發光二極體的接面溫度,再以光學顯微鏡配合上高倍數的物鏡,聚焦至發光二極體內部,藉由輸入10mA至240mA的電流,進行熱效應對發光二極體內部發光變化的探討,研究結果得知,接面溫度會隨著輸入電流的增加而跟著上升,兩者呈現一個線性的關係。透過本光學系統,可得知電流在LED內部分佈並非相當的均勻,發光強度較強的區域集中在電極附近,隨著接面溫度的上升,使光出射之臨界角變小,造成光集中從LED中間區域出射,使邊緣之發光強度較弱。受到熱效應的影響,在140mA下其發光強度就會而開始衰減,波長在100mA後即開始往長波長移動,形成紅位移,由研究的結果顯示,受熱效應較大的區域,其發光效率會隨著電流的增加而遞減(約減少7.56 %),受熱效應較小之區域,其發光效率則會隨著電流的增加而稍做增加(約增加5.9 %),透過本系統對發光二極體內部進行量測,可以將發光二極體最真實的發光變化給呈現出來。


    In general, the light emitting diodes (LEDs) are discussed its luminous quality by the variation of external light of LED. We applyed the forward voltage method to measure the junction temperature of LED. With optical microscopy in combination of high magnification objective lens, We could focus on the internal regions of LED to investigate the influence of thermal effect by injecting current from 10mA to 240mA. As the injection current increased, the junction temperature would also raise. The results showed a linear relation between injection current and junction temperature. The luminous intensity would be enhanced if input current were increased. Through the optical system we would know the current spreading in the interior regions of LED was not very uniform. The luminous intensity would stronger concentrate in the nearby electrode regions. As the junction temperature raised, the refractive index of gallium nitride would become larger, and the critical angle of total reflection would be smaller. This phenomenon caused the light would only emit from the middle regions of LED and the luminous intensity weaker on the edges. Due to the influence of thermal effect, luminous intensity would decay after 140mA and result in unstable emitting wavelength along with red shift after 100mA. According to the results, Luminous efficiency changed in different zones. The influence of thermal effect was more obvious nearby the electrode regions. The luminous efficiency decreased about 7.56 % when the current increased. The farther distance from the electrode regions, the less influence of thermal effect was observed. The luminous efficiency made a little increase about 5.9% when the current increased. Apply this system to measure in the internal regions of LED, the truly influence of the thermal effect on LED would be performed.

    摘要I ABSTRACT II 致謝IV 目錄V 圖目錄VII 表目錄VIII 第一章導論 1 1.1發光二極體的發展及應用1 1.2文獻回顧 2 1.2.1熱對發光二極體的影響2 1.2.2發光二極體接面溫度量測3 1.2.3發光二極體發光效率提升方式5 1.2.3.1.圖形化藍寶石基板製作6 1.2.4利用共焦顯微鏡觀測發光二極體之發光變化8 1.3論文架構11 第二章研究目的與方法12 2.1研究目的12 2.2研究方法13 2.2.1實驗晶粒封裝流程與結構圖13 2.2.2量測設備與方法15 2.2.2.1積分球與I-V電性量測15 2.2.2.2光學顯微鏡系統18 2.2.3接面溫度量測28 2.2.3.1儀器設置28 2.2.3.2實驗流程29 2.2.3.3自動化量測程式31 2.2.4以紅外線測溫儀測量發光二極體之操作溫度32 第三章理論原理34 3.1以順向偏壓法量測接面溫度34 3.2發光二極體製作與結構簡介38 3.3能隙、波長與溫度之關係40 3.4溫度與出射強度41 3.5折射率、全反射角與出光效率41 3.6晶粒形狀與電流分佈43 3.7分佈電阻與接面電阻43 第四章實驗結果與討論46 4.1接面溫度量測結果46 4.2發光二極體各磊晶層位置49 4.2.1圖形化基板與表面電極層49 4.2.2多重量子井發光層53 4.3電流分佈之均勻性55 4.4熱效應探討59 4.4.1發光強度59 4.4.2波長62 4.4.3發光效率63 第五章結論與建議66 5.1結論66 5.2未來發展方向68 參考文獻69 附錄 1.1光學顯微鏡系統之應用74

    [1]M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, "A Review on the Reliability of GaN-Based LEDs," Device and Materials Reliability, IEEE Transactions on, vol. 8, pp. 323-331, 2008.
    [2]M. Arik, C. A. Becker, S. E. Weaver, and J. Petroski, "Thermal management of LEDs: package to system," vol. 5187, pp. 64-75, 2004.
    [3]N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, "Solid-state lighting: failure analysis of white LEDs," Journal of Crystal Growth, vol. 268, pp. 449-456, 2004.
    [4]S. Chhajed, Y. Xi, Y.-L. L. a. T. Gessmann, and E. F. Schubert, "Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes," Journal of Applied Physics, vol. 97, pp. 054506-054513, 2005.
    [5]S. Todoroki, M. Sawai, and K. Aiki, "Temperature distribution along the striped active region in high-power GaAlAs visible lasers," Journal of Applied Physics, vol. 58, pp. 1124-1128, 1985.
    [6]H. I. Abdelkader, H. H. Hausien, and J. D. Martin, "Temperature rise and thermal rise-time measurements of a semiconductor laser diode," Review of Scientific Instruments, vol. 63, pp. 2004-2007, 1992.
    [7]W. J. Hwang, T. H. Lee, L. Kim, and M. W. Shin, "Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement," physica status solidi (c), vol. 1, pp. 2429-2432, 2004.
    [8]Y. Gu and N. Narendran, "A noncontact method for determining junction temperature of phosphor-converted white LEDs," in Third International Conference on Solid State Lighting, San Diego, CA, United States, 2004, pp. 107-114.
    [9]Y. Xi and E. F. Schubert, "Junction--temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters, vol. 85, pp. 2163-2165, 2004.
    [10]Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, "Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods," Applied Physics Letters, vol. 86, pp. 031907-3, 2005.
    [11]Z. Ma, X. Zheng, W. Liu, X. Lin, and W. Deng, "Fast thermal resistance measurement of high brightness LED," in 2005 6th International Conference on Electronics Packaging Technology, 2005.
    [12]S. L. Kuo, C. K. Liu, M. J. Dai, C. K. Yu, H. C. Chien, and C. Y. Hsu, "Characteristics of thermal resistance for high power LEDs," in 10th Electronics Packaging Technology Conference, EPTC 2008, 2008, pp. 149-154.
    [13]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, "Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD," IEEE Electron Device Letters, vol. 26, pp. 464-466, 2005.
    [14]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go, N. F. Gardner, R. S. Kern, and S. A. Stockman, "High-power AlGaInN flip-chip light-emitting diodes," Applied Physics Letters, vol. 78, pp. 3379-3381, 2001.
    [15]H. Shao-Hua, H. Ray-Hua, L. Szu-Lung, Y. Kuo-Wei, W. Dong-Sing, L. Chao-Kun, and L. Heng, "Thermally Stable Mirror Structures for Vertical-Conducting GaN/Mirror/Si Light-Emitting Diodes," Photonics Technology Letters, IEEE, vol. 19, pp. 1913-1915, 2007.
    [16]S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, "High dislocation densities in high efficiency GaN-based light-emitting diodes," Applied Physics Letters, p. 1249, 1995.
    [17]A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Japanese Journal of Applied Physics, Part 2: Letters, vol. 36, pp. L899-L902, 1997.
    [18]Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, "Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 144, pp. 133-140, 1994.
    [19]S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, "InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices," Japanese Journal of Applied Physics, vol. 36, 1997.
    [20]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, "High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy," Physica Status Solidi (A) Applied Research, vol. 188, pp. 121-125, 2001.
    [21]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale," JOURNAL OF APPLIED PHYSICS, vol. 103, pp. 014314-5, 2008.
    [22]J. H. Cheng, Y. S. Wu, W. C. Liao, and B.-W. Lin, "Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire," Applied Physics Letters, vol. 96, pp. 051109-3.
    [23]M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodeswith High External Quantum Efficiency Using a Patterned Sapphire Substrateand a Mesh Electrode," Japanese Journal of Applied Physics, vol. 41, pp. L1431-L1433, 2002.
    [24]N. Han, H. G. Kim, H. Y. Kim, H. K. Kim, J. H. Kang, J. H. Ryu, Y. S. Lee, E. K. Suh, and C. H. Hong, "InGaN/GaN light-emitting diode on concave-hexagonal-patterned sapphire substrate," Japanese Journal of Applied Physics, vol. 48, 2009.
    [25]T. Dai, B. Zhang, X. N. Kang, K. Bao, W. Z. Zhao, D. S. Xu, G. Y. Zhang, and Z. Z. Gan, "Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template," IEEE Photonics Technology Letters, vol. 20, pp. 1974-1976, 2008.
    [26]C. Griffin, E. Gu, H. W. Choi, C. W. Jeon, J. M. Girkin, M. D. Dawson, and G. McConnell, "Beam divergence measurements of InGaN/GaN micro-array light-emitting diodes using confocal microscopy," Applied Physics Letters, vol. 86, pp. 041111-041111-3, 2005.
    [27]P. Davidovits and M. D. Egger, "Scanning Laser Microscope," Nature, vol. 223, pp. 831-831, 1969.
    [28]L. Kuna, C. Sommer, E. Zinterl, F. P. Wenzl, P. Pachler, P. Hartmann, S. Tasch, and G. Leising, "Confocal microscopy as a tool for the study of the emission characteristics of high-power LEDs," Applied Physics B: Lasers and Optics, vol. 91, pp. 571-577, 2008.
    [29]"A Guide to Integrating Sphere Theory and Applications," http://www.labsphere.com/data/userFiles/A%20Guide%20to%20Integrating%20Sphere%20Theory&Apps.pdf, p. 3.
    [30]M. Born and E. Wolf, "Principles of Optics," Pergamon Press 1980.
    [31]J. T. Hsu, W. Y. Yeh, C. C. Chuo, J. D. Tsay, C. S. Huang, and C. Y. Lin, "Beveled sidewall formation and its effect on the light output of a GaInN multiquantum well light-emitting diode with sapphire substrate," Optical Engineering, vol. 44, 2005.
    [32]Philipsumileds, "Application notes 1149-4 Thermal Management Considerations for SuperFlux LEDs," p. 2, 2002.
    [33]P. C. Tsai, R. W. Chuang, and Y. K. Su, "Lifetime Tests and Junction-Temperature Measurement of InGaN Light-Emitting Diodes Using Patterned Sapphire Substrates," J. Lightwave Technology, vol. 25, pp. 591-596, 2007.
    [34]Y. Xi, T. Gessmann, J. Xi, J. K. Kim, J. M. Shah, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, "Junction Temperature in Ultraviolet Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 44, pp. 7260-7266, 2005.
    [35]X. Guo and E. F. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of Applied Physics, vol. 90, p. 4191, 2001.
    [36]E. F. Schubert, "LIGHT-EMITTING DIODES," Cambridge Universuty Press, 2002.
    [37]C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, "Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD," Journal of Crystal Growth, vol. 285, pp. 312-317, 2005.
    [38]R.-H. Horng, C.-E. Lee, C.-Y. Kung, S.-H. Huang, and D.-S. Wuu, "High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating," Japanese Journal of Applied Physics, vol. 43, pp. L576-L578, 2004.
    [39]J. D. Norton, "The determination of theory by evidence: The case for quantum discontinuity, 1900–1915," Synthese, vol. 97, pp. 1-31, 1993.
    [40]Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, pp. 149-154, 1967.
    [41]W. H. Lan, "Wavelength shift of gallium nitride light emitting diode with p-down structure," IEEE Transactions on Electron Devices, vol. 52, pp. 1217-1219, 2005.
    [42]C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen, and J. I. Chyi, "InGaN-GaN MQW LEDs with current blocking layer formed by selective activation," IEEE Electron Device Letters, vol. 25, pp. 384-386, 2004.
    [43]劉如熹, "白光發光二極體製作技術-由晶粒金屬化至封裝," 全華圖書股份有限公司, 2009.
    [44]K. A. Bulashevich, I. Y. Evstratov, V. F. Mymrin, and S. Y. Karpov, "Current spreading and thermal effects in blue LED dice," Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 4, pp. 45-48, 2007.
    [45]H. Kim, S.-J. Park, H. Hwang, and N.-M. Park, "Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs," Applied Physics Letters, vol. 81, pp. 1326-1328, 2002.
    [46]A. Yasan, R. McClintock, K. Mayes, S. R. Darvish, H. Zhang, P. Kung, M. Razeghi, S. K. Lee, and J. Y. Han, "Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire," Applied Physics Letters, vol. 81, pp. 2151-2153, 2002.
    [47]N. Iizuka, K. Kaneko, and N. Suzuki, "Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy," Applied Physics Letters, vol. 81, pp. 1803-1805, 2002.
    [48]N. Watanabe, T. Kimoto, and J. Suda, "The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C," Journal of Applied Physics, vol. 104, pp. 106101-3, 2008.
    [49]K. H. Loo, W. K. Lun, S. C. Tan, Y. M. Lai, and C. K. Tse, "On driving techniques for LEDs: Toward a generalized methodology," IEEE Transactions on Power Electronics, vol. 24, pp. 2967-2976, 2009.
    [50]K. H. LEE and S. W. R. LEE, "Process Development for Yellow Phosphor Coating on Blue Light Emitting Diodes (LEDs) for White Light Illumination," pp. 379-384, 2006.
    [51]R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, "High-power phosphor-converted light-emitting diodes based on III-Nitrides," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 339-345, 2002.
    [52]M. R. Wang, "Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication," Applied Optics, vol. 37, pp. 7568-7576, 1998.
    [53]S. H. Cho, J. M. Kim, J. G. Kim, W. S. Chang, and E. S. Lee, "Fabrication of optical waveguides using laser direct writing method," in High-Power Laser Ablation V, Taos, NM, USA, 2004, pp. 783-789.
    [54]Y.-T. Wu, H.-C. Su, C.-M. Tsai, K.-L. Liu, G.-D. Chen, R.-H. Huang, and T.-R. Yew, "Carbon nanotube formation by laser direct writing," Applied Physics Letters, vol. 93, pp. 023108-3, 2008.
    [55]C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, "Laser direct writing of nanoreliefs in Sn nanofilms," Optics Letter, vol. 34, pp. 2820-2822, 2009.

    QR CODE