簡易檢索 / 詳目顯示

研究生: Ahmad Nur Riza
Ahmad Nur Riza
論文名稱: 大氣壓等離子體對電子可靠性的作用:蝕刻和表面處理的研究案例
The Role of Atmospheric Pressure Plasma (APP) on The Electronic Reliability: Study Case of Etching and Surface Treatment
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 怡文顏
郭俞麟
Sagung Dewi Kencana
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: Atmospheric Pressure PlasmaEtchingICs DecapsulationSurface TreatmentSn Whiskers
外文關鍵詞: Atmospheric Pressure Plasma, Etching, ICs Decapsulation, Surface Treatment, Sn Whiskers
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Atmospheric pressure plasma (APP) is recently been widely developed for some different applications. As a vacuum plasma, the APP can be used for some purposes such as etching and surface treatment. In this study, two different cases are studied: Case I. APP etching application for Integrated Circuits (ICs) decapsulation, and Case II. The roles of APP on mitigating tin (Sn) whiskers growth.
ICs decapsulation is a failure analysis (destructive method) after all of the process has been done, to ensure that the wire bond is in good condition after the encapsulation process. The analysis can be done by removing the mold compound using wet and/or dry etching methods. In this study, the dry etching method using atmospheric pressure plasma is proposed for the decapsulation process. Four different gas sources: compressed dry air (CDA), argon (Ar), a mixture of argon and 2% oxygen (O2), and a mixture of argon and 2% of hydrogen (H2) are used. The results show that the process with CDA successfully etch the mold compound, yet the wire bonds are damaged due to its high etching rate. While the decapsulation process with Ar gas only is not successfully can etch the mold compound, adding a little amount of oxygen and hydrogen can increase the etching process and successfully remove the mold compounds. However, adding a little amount of oxygen can damage the wire bonds. While adding a little amount of hydrogen shows good results and there is no damage to the wire bonds.
Tin (Sn) is widely used as the material for a surface finish in electronic components. However, the usage of Sn tends to grow a whisker. In this study, APP surface treatment is applied to Sn plating with two different gas sources: CDA and nitrogen (N2). Then, a mechanical indentation is applied for 24 hours with a 100 Kg load. The Sn plating of 0 weeks, 2 weeks after, and 4 weeks after the indentation is observed by SEM to see the whiskers' growth. The Sn whiskers that grow on the sample treated with nitrogen are less compared to the untreated sample. The plasma temperature measurement on the APP is around 100 0C and 150 0C by CDA and N2 gas sources.


Atmospheric pressure plasma (APP) is recently been widely developed for some different applications. As a vacuum plasma, the APP can be used for some purposes such as etching and surface treatment. In this study, two different cases are studied: Case I. APP etching application for Integrated Circuits (ICs) decapsulation, and Case II. The roles of APP on mitigating tin (Sn) whiskers growth.
ICs decapsulation is a failure analysis (destructive method) after all of the process has been done, to ensure that the wire bond is in good condition after the encapsulation process. The analysis can be done by removing the mold compound using wet and/or dry etching methods. In this study, the dry etching method using atmospheric pressure plasma is proposed for the decapsulation process. Four different gas sources: compressed dry air (CDA), argon (Ar), a mixture of argon and 2% oxygen (O2), and a mixture of argon and 2% of hydrogen (H2) are used. The results show that the process with CDA successfully etch the mold compound, yet the wire bonds are damaged due to its high etching rate. While the decapsulation process with Ar gas only is not successfully can etch the mold compound, adding a little amount of oxygen and hydrogen can increase the etching process and successfully remove the mold compounds. However, adding a little amount of oxygen can damage the wire bonds. While adding a little amount of hydrogen shows good results and there is no damage to the wire bonds.
Tin (Sn) is widely used as the material for a surface finish in electronic components. However, the usage of Sn tends to grow a whisker. In this study, APP surface treatment is applied to Sn plating with two different gas sources: CDA and nitrogen (N2). Then, a mechanical indentation is applied for 24 hours with a 100 Kg load. The Sn plating of 0 weeks, 2 weeks after, and 4 weeks after the indentation is observed by SEM to see the whiskers' growth. The Sn whiskers that grow on the sample treated with nitrogen are less compared to the untreated sample. The plasma temperature measurement on the APP is around 100 0C and 150 0C by CDA and N2 gas sources.

Cover Page i Acknowledgment iv Abstract vi Table of Content viii List of Figure xi List of Table xiv Chapter I Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Outline of the Thesis 2 Chapter II Literature Review 4 2.1 Semiconductor Manufacturing Process 4 2.2 Integrated Circuits (ICs) Package 6 2.3 Introduction to Plasma 8 2.3.1 Electric Discharge 9 2.3.2 Collision in Plasma 11 2.4 Etching 14 2.4.1 Wet Etching Method 15 2.4.2 Dry Etching Method 17 2.5 Plasma Surface Treatment 19 2.6 ICs Decapsulation 20 2.7 Tin (Sn) Whiskers 25 Chapter III Experimental Setup 30 3.1 Case I. APPJ Etching Application for Integrated Circuits (ICs) Decapsulation 30 3.1.1 ICs Package 30 3.1.2 Plasma Etching & Diagnostic 30 3.1.3 Decapsulation Results and Wire Bond Observations 31 3.1.4 Thermogravimetric Analysis (TGA) Analysis 31 3.1.5 Decapsulation Experiment Event Sequence 31 3.2 Case II. The Role of Atmospheric Pressure Plasma on Mitigating Tin (Sn) Whiskers Growth 33 3.2.1 Tin (Sn) Deposition Process 33 3.2.2 Sn Whiskers Growing Methods 34 3.2.3 Plasma Treatment for Whiskers Growth Mitigation 34 3.2.4 Sn Whiskers Observation 35 3.2.5 X-Ray Diffractometer (XRD) 35 3.2.6 Sequence of Events for Sn Whiskers Experiment 35 Chapter IV Case I. APP Etching Application for Integrated Circuits (ICs) Decapsulation 38 4.1 Introduction and Motivation 38 4.2 Results and Discussion 39 4.21 Plasma Reactive Species of Fixed Head APP 39 4.2.2 Plasma Temperature of Fixed Head APP 45 4.2.3 The Effects of Plasma Gas Sources on The Etching Performances 46 4.2.4 The Effect of Plasma Gas Sources on The ICs Decapsulation 50 4.2.5 The Effect of Plasma Gas Sources on The Wire Bonds ICs Decapsulated 53 4.2.6 Proposed Method v.s Recent Method 58 Chapter V Case I. APP Etching Application for Integrated Circuits (ICs) Decapsulation 60 5.1 Introduction 60 5.2 Results and Discussion 62 5.2.1 Plasma Reactive Species of Rotary Head APP 62 5.2.2 Plasma Temperature of Rotary Head APP 64 5.2.3 Sn Whiskers Growth Mechanism Driven by Mechanical Stressing 64 5.2.4 Effect of APP Treatment on Sn Plane and Sn Surface 67 5.2.5 Effect of APP Treatment on Whiskers Growth 70 5.2.6 Proposed Method of Sn Whiskers Growth Mechanism by APP 77 Chapter VI Conclusion and Future Development 79 Reference 82

[1] S.D. Kencana, W. Chuang, C. Changraini, E. Schellkes, Y. Kuo, K. Chang, Achieving Selective Cleaning on Semiconductors Packaging Using Atmospheric Pressure Plasma, (2020) 1298–1303. https://doi.org/10.1109/ECTC32862.2020.00205.
[2] Y.L. Kuo, S.D. Kencana, Y.M. Su, H.T. Huang, Tailoring the O2 reduction activity on hydrangea-like La0.5Sr0.5MnO3 cathode film fabricated via atmospheric pressure plasma jet process, Ceram. Int. 44 (2018) 7349–7356. https://doi.org/10.1016/j.ceramint.2018.02.068.
[3] S.D. Kencana, Y.L. Kuo, Y.W. Yen, E. Schellkes, W. Chuang, Improving the solder wettability via atmospheric plasma technology, Proc. - Electron. Components Technol. Conf. 2019-May (2019) 2067–2071. https://doi.org/10.1109/ECTC.2019.00317.
[4] G.S. May, C.J. Spanos, Fundamentals of Semiconductor Manufacturing and Process Control, Wiley-Interscience, Hoboken, New Jersey, 2006.
[5] J.S. Kilby, Hanbook of Semiconductor Manufacturing Technology, 2007. https://doi.org/10.1201/9781420017663.fmatt.
[6] C.J. Mogab, A.C. Adams, D.L. Flamm, Plasma etching of Si and SiO2 - The effect of oxygen additions to CF4 plasmas, J. Appl. Phys. 49 (1978) 3796–3803. https://doi.org/10.1063/1.325382.
[7] Introduction to Semiconductor Technology, 2008. www.hach.com/asset-get.download.jsa?id=7639984736?
[8] K. Seon, Introduction to Semiconductor Manufacturing and FA Process, (2017). https://www.nexty-ele.com/nat/wp-content/uploads/sites/3/2017/10/6.-Manufacturing-process-of-seminconductor-and-course-of-failure-analysis.pdf.
[9] Fujitsu, IC Package, (2011) 1–10.
[10] A. Chen, R.H.-Y. Lo, Semiconductor Packaging Materials Interaction and Reliability, 2016. https://doi.org/10.1201/b11260.
[11] Anysilicon, Semiconductor Packaging History and Trends, (2022). https://anysilicon.com/semiconductor-packaging-history-trends/.
[12] H. Yu, Y. Zhang, A. Wong, I.M. De Rosa, H.S. Chueh, M. Grigoriev, T.S. Williams, T. Hsu, R.F. Hicks, Atmospheric and Vacuum Plasma Treatments of Polymer Surfaces for Enhanced Adhesion in Microelectronics Packaging, in: Adhes. Microelectron., 2014: pp. 137–172. https://doi.org/10.1002/9781118831373.ch4.
[13] A. Piel, Plasma Physics and Fusion Plasmas, 2017. http://www.springer.com/series/8431.
[14] D.A. Frank-Kamenetskii, Plasma The Fourth State of Matter, Plenum Press, New York, 1972.
[15] A. Materials, Plasma Fundamental Theory, n.d.
[16] S.D. Kencana, Plasma State, in: Lesson 1.2, n.d.
[17] J.G. Linhart, Plasma Physics, n.d.
[18] M. Hrabovsky, Thermal Plasma: Properties, Generation, Diagnostics and Applications, n.d.
[19] Electric Glow Discharge, (n.d.). https://www.plasma-universe.com/Electric-glow-discharge/.
[20] S.D. Kencana, Elastic and non Elastic Collision Processes, n.d.
[21] Elastic Collision, (n.d.). https://byjus.com/physics/elastic-collision/.
[22] What are elastic and inelastic collisions?, Khan Acad. (2022). https://www.khanacademy.org/science/physics/linear-momentum/elastic-and-inelastic-collisions/a/what-are-elastic-and-inelastic-collisions.
[23] W. Moller, Fundamentals of Plasma Physics, 2006.
[24] S. V. Desai, W.H. Corcoran, Recombination of electrons and ions in an atmospheric argon plasma, J. Quant. Spectrosc. Radiat. Transf. 9 (1969) 1371–1386. https://doi.org/10.1016/0022-4073(69)90122-8.
[25] M. Nakamura, Dry Etching Technology for Semiconductors, 2014. https://doi.org/10.1541/ieejfms1990.111.7_606.
[26] R. Mahzoon, In-situ Measurement of Plasma Etch Rate Using EtchRate Wafer, San Jose State University, 2018. https://doi.org/https://doi.org/10.31979/etd.7898-qekp.
[27] W.R. Runyan, K.E. Bean, Chapter 6: Etching, Semicond. Integr. Circuit Process. Technol. (1990) 1–15.
[28] M. Ostling, Lecture 7 Etching : Basic Terminology, 2013.
[29] Plasma Treatment Explained in Simple Terms, (n.d.). https://plasmatreatment.co.uk/pt/plasma-technology-overview/plasma-treatment-explained.
[30] T. Homola, L.Y.L. Wu, M. Černák, Atmospheric plasma surface activation of poly(ethylene Terephthalate) film for roll-to-roll application of transparent conductive coating, J. Adhes. 90 (2014) 296–309. https://doi.org/10.1080/00218464.2013.794110.
[31] S.L. Kaplan, P.W. Rose, Plasma surface treatment of plastics to enhance adhesion, Int. J. Adhes. Adhes. 11 (1991) 109–113. https://doi.org/10.1016/0143-7496(91)90035-G.
[32] D. Hegemann, H. Brunner, C. Oehr, Plasma treatment of polymers for surface and adhesion improvement, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 208 (2003) 281–286. https://doi.org/10.1016/S0168-583X(03)00644-X.
[33] Plasma Cleaning, (n.d.).
[34] Plasma Surface Activation, (n.d.). https://plasmatreatment.co.uk/pt/plasma-technology-overview/plasma-surface-activation.
[35] S. Murali, N. Srikanth, Acid Decapsulation of Epoxy Molded IC, Ieee Trans. Electron. Packag. Manuf. 29 (2006) 179–183.
[36] S. Suzuki, M. Yamaguchi, Acid decapsulation for silver wire bonded package, Conf. Proc. from Int. Symp. Test. Fail. Anal. 2015-Janua (2015) 436–440. https://doi.org/10.31399/asm.cp.istfa2015p0436.
[37] S. Manoharan, G. Krishnanramaswami, F.P. McCluskey, M.G. Pecht, Failure mechanisms in encapsulated copper wire-bonded devices, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA. 2016-Septe (2016) 316–320. https://doi.org/10.1109/IPFA.2016.7564308.
[38] S. Manoharan, C. Patel, P. McCluskey, M. Pecht, Effective decapsulation of copper wire-bonded microelectronic devices for reliability assessment, Microelectron. Reliab. 84 (2018) 197–207. https://doi.org/10.1016/j.microrel.2018.03.028.
[39] G.H.G. Chan, J.L. Leow, K.Y. Ching, W.F. Kho, Novel application of ultrasonic decapsulation and etching in failure analysis, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA. 2017-July (2017) 1–4. https://doi.org/10.1109/IPFA.2017.8060103.
[40] M.J. Lefevre, F. Beauquis, J. Yang, M. Obein, P. Gounet, S. Barberan, New method for decapsulation of copper wire devices using LASER and sub-ambient temperature chemical etch., 2011 IEEE 13th Electron. Packag. Technol. Conf. EPTC 2011. (2011) 769–773. https://doi.org/10.1109/EPTC.2011.6184523.
[41] T. Kurita, N. Kasashima, H. Yamakiri, N. Ichihashi, N. Kobayashi, K. Ashida, S. Sasaki, Development of the new IC decapsulation technology, Opt. Lasers Eng. 49 (2011) 1216–1223. https://doi.org/10.1016/j.optlaseng.2011.04.013.
[42] E.J. Chwastek, I.A. Holland, A mechanical decapsulation technique for epoxide‐packaged semiconductor components, Qual. Reliab. Eng. Int. 4 (1988) 7–10. https://doi.org/10.1002/qre.4680040106.
[43] L. Liu, G. Yuan, X. Chen, Grinding decapsulation method application in failure analysis of plastic encapsulated devices, ICRMS 2014 - Proc. 2014 10th Int. Conf. Reliab. Maintainab. Saf. More Reliab. Prod. More Secur. Life. (2014) 77–81. https://doi.org/10.1109/ICRMS.2014.7107141.
[44] Y.Y. Tan, M. Ng, J.L. Khoo, C.H. Tan, C. De Silva, K.S. Sim, A microwave plasma dry etch technique for failure analysis of Cu and PdCu wire bonds strength, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA. (2013) 153–157. https://doi.org/10.1109/IPFA.2013.6599144.
[45] J. Thomas, J. Baer, P. Westby, K. Mattson, F. Haring, G. Strommen, J. Jacobson, S.S. Ahmad, A. Reinholz, A unique application of decapsulation combining laser and plasma, Proc. - Electron. Components Technol. Conf. (2009) 2011–2015. https://doi.org/10.1109/ECTC.2009.5074298.
[46] L. Qian, C.I.M. Beenakker, C.J. Vath, A novel decapsulation technique for failure analysis of integrated circuits, 2006 7th Int. Conf. Electron. Packag. Technol. ICEPT ’06. (2007). https://doi.org/10.1109/ICEPT.2006.359747.
[47] J. Tang, J.B.J. Schelen, C.I.M. Beenakker, Optimization of the Microwave Induced Plasma system for failure analysis in Integrated Circuit packaging, Proc. - 2010 11th Int. Conf. Electron. Packag. Technol. High Density Packag. ICEPT-HDP 2010. (2010) 1034–1038. https://doi.org/10.1109/ICEPT.2010.5582713.
[48] J. Tang, H. Ye, J.B.J. Schelen, C.I.M. Beenakker, Plasma decapsulation of plastic IC packages with copper wire bonds for failure analysis, ICEPT-HDP 2011 Proc. - 2011 Int. Conf. Electron. Packag. Technol. High Density Packag. (2011) 888–892. https://doi.org/10.1109/ICEPT.2011.6066972.
[49] J. Tang, J.B.J. Schelen, C.I.M. Beenakker, Flexible system for real-time plasma decapsulation of copper wire bonded IC packages, Proc. - Electron. Components Technol. Conf. (2012) 1764–1769. https://doi.org/10.1109/ECTC.2012.6249076.
[50] J. Tang, E.G.J. Reinders, C.T.A. Revenberg, J.B.J. Schelen, C.I.M. Beenakker, Decapsulation of high pin count IC packages with palladium coated copper wire bonds using an atmospheric pressure plasma, Proc. 2012 IEEE 14th Electron. Packag. Technol. Conf. EPTC 2012. (2012) 165–169. https://doi.org/10.1109/EPTC.2012.6507071.
[51] J. Tang, A.R.G.W. Knobben, E.G.J. Reinders, C.T.A. Revenberg, J.B.J. Schelen, C.I.M. Beenakker, Microwave Induced Plasma Decapsulation of Stressed and Delaminated High Pin-count Copper Wire Bonded IC Packages, Proc. - 2013 14th Int. Conf. Electron. Packag. Technol. ICEPT 2013. (2013) 981–986. https://doi.org/10.1109/ICEPT.2013.6756624.
[52] J. Tang, K.D. Staller, K. Beenakker, Decapsulation of multi-Chip BOAC devices with exposed copper metallization using atmospheric pressure microwave induced plasma, Conf. Proc. from Int. Symp. Test. Fail. Anal. 2015-Janua (2015) 480–490.
[53] J. Tang, M.R. Curiel, S.L. Furcone, E.G.J. Reinders, C.T.A. Revenberg, C.I.M. Beenakker, Failure Analysis of Complex 3D Stacked-die IC Packages using Microwave Induced Plasma Afterglow Decapsulation, Proc. - 2015 Electron. Components Technol. Conf. (2015) 845–852.
[54] J.A. Brusse, G.J. Ewell, J.P. Siplon, Tin whiskers : Attributes and Mitigation, 22nd Capacit. Resist. Technolgoy Symp. (2018).
[55] J. Smetana, Theory of tin whisker growth: “The end game,” IEEE Trans. Electron. Packag. Manuf. 30 (2007) 11–22. https://doi.org/10.1109/TEPM.2006.890645.
[56] R.F. Champaign, R.R. Ogden, Microscopy study of tin whiskers, J. Fail. Anal. Prev. 10 (2010) 444–449. https://doi.org/10.1007/s11668-010-9392-1.
[57] P. Zhang, Y. Zhang, Z. Sun, Spontaneous Growth of Metal Whiskers on Surfaces of Solids: A Review, J. Mater. Sci. Technol. 31 (2015) 675–698. https://doi.org/10.1016/j.jmst.2015.04.001.
[58] J.M. Song, T.S. Lui, Y.L. Chang, L.H. Chen, Tin whiskers of bulk solders generated under resonance, J. Mater. Res. 20 (2005) 1385–1388. https://doi.org/10.1557/JMR.2005.0195.
[59] H. Moriuchi, Y. Tadokoro, M. Sato, T. Furusawa, N. Suzuki, Microstructure of external stress whiskers and mechanical indentation test method, J. Electron. Mater. 36 (2007) 220–225. https://doi.org/10.1007/s11664-006-0030-3.
[60] N.L.M. Amin, S.Z. Yusof, M.N.A. Kahar, T.A.A. Bakar, A. Oa, N.A. Fadil, Tin Whiskers Formation and Growth on Immersion Sn Surface Finish under External Stresses by Bending, IOP Conf. Ser. Mater. Sci. Eng. 238 (2017). https://doi.org/10.1088/1757-899X/238/1/012001.
[61] N. Zaimah Mohd Mokhtar, M. Arif Anuar Mohd Salleh, A. Noorliyana Hashim, Preliminary Study of Electrical Current Stressing on Tin Whisker Formation, IOP Conf. Ser. Mater. Sci. Eng. 551 (2019). https://doi.org/10.1088/1757-899X/551/1/012096.
[62] S.H. Liu, C. Chen, P.C. Liu, T. Chou, Tin whisker growth driven by electrical currents, J. Appl. Phys. 95 (2004) 7742–7747. https://doi.org/10.1063/1.1712019.
[63] P. Snugovsky, S. Meschter, Z. Bagheri, E. Kosiba, M. Romansky, J. Kennedy, Whisker formation induced by component and assembly ionic contamination, J. Electron. Mater. 41 (2012) 204–223. https://doi.org/10.1007/s11664-011-1808-5.
[64] A.N. Hashim, M.A.A.M. Salleh, N.Z.M. Mokhtar, S. Idris, Tin (Sn) whisker growth from electroplated Sn finished, IOP Conf. Ser. Mater. Sci. Eng. 701 (2019). https://doi.org/10.1088/1757-899X/701/1/012005.
[65] T. Shibutani, Q. Yu, Pressure Induced Tin Whisker Formation on SnCu Finish by Nanoindentation Creep, 10th Electron. Packag. Technol. Conf. (2008) 1442–1447. https://doi.org/10.1109/eptc.2008.4763634.
[66] A. Dimitrovska, R. Kovacevic, The Effect of Micro-Alloying of Sn Plating on Mitigation of Sn Whisker Growth, 38 (2009) 2726–2734. https://doi.org/10.1007/s11664-009-0915-z.
[67] D. Hillman, R. Wilcoxon, N. Lower, D. Grossman, Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers, J. Electron. Mater. 44 (2015) 4864–4883. https://doi.org/10.1007/s11664-015-4057-1.
[68] T.A. Woodrow, E.A. Ledbury, Evaluation of Conformal Coatings as a Tin Whisker Mitigation Strategy, IPC/JEDEC 8th Int. Conf. Lead-Free Electron. Components Assem. San Jose, CA, April 18-20. (2005) 191–215.
[69] S. Han, M. Osterman, S. Meschter, M. Pecht, Evaluation of effectiveness of conformal coatings as tin whisker mitigation, J. Electron. Mater. 41 (2012) 2508–2518. https://doi.org/10.1007/s11664-012-2179-2.
[70] C. Hunt, M. Wickham, Mitigation Of Tin Whiskers With Polymer Coatings Christopher Hunt and Martin Wickham, (2010) 78–87.
[71] S. Mathew, M. Osterman, T. Shibutani, Q. Yu, M. Pecht, Tin Whiskers : How to Mitigate and Manage the Risks, (2007) 1–8.
[72] L. Meinshausen, S. Bhassyvasantha, B.S. Majumdar, Influence of Indium Addition on Whisker Mitigation in Electroplated Tin Coatings on Copper Substrates, 45 (2016) 791–801. https://doi.org/10.1007/s11664-015-4204-8.
[73] B.S. Majumdar, I. Dutta, S. Bhassyvasantha, S. Das Mahapatra, Recent Advances in Mitigation of Whiskers from Electroplated Tin, J. Miner. Met. Mater. Soc. 72 (2020) 906–917. https://doi.org/10.1007/s11837-019-03933-7.
[74] O. Ri, K. Urzwk, Q. Gglwlrq, W.R. Ohfwursodwhg, L.Q. Ohfwurqlf, Elimination of Tin Whiskers Growth by Indium Addition to Electroplated Tin in Electronic Packages, 16th IEEE ITHERM Conf. (2017).
[75] H. Lee, K. Chan, M. Hamdi, Effect of Annealing on Sn Whisker Formation Under Temperature Cycling and Isothermal Storage Conditions, IEEE Trans. Components, Packag. Manuf. Technol. (2011) 1–6.
[76] W. Diyatmika, J.P. Chu, Y.W. Yen, Effects of annealing on Sn whisker formation: Role of Cu alloy seed layer, Proc. Tech. Pap. - Int. Microsystems, Packag. Assem. Circuits Technol. Conf. IMPACT. 2 (2013) 319–322. https://doi.org/10.1109/IMPACT.2013.6706672.
[77] B. Horváth, Examination of Tin Whisker Growth in Electronic Assemblies, 2012.
[78] J. Tang, J. Wang, T.H. Tan, M. Endo, K.M. Ng, L.C. Lee, C.I.M. Beenakker, Decapsulation of copper wire devices with high Tg mold compound using microwave induced plasma, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA. 2016-Septe (2016) 427–432. https://doi.org/10.1109/IPFA.2016.7564332.
[79] M. Alaf, D. Gultekin, H. Akbulut, Tin/tinoxide (sn/sno2) nanocomposites thin films as negative-electrode materials for li-ion batteries, Acta Phys. Pol. A. 123 (2013) 323–325. https://doi.org/10.12693/APhysPolA.123.323.
[80] K. Seon, Introduction to Semiconductor Manufacturing and FA Process, 2017.
[81] N.M. Aljamali, I.O. Alfatlawi, N.S.M. Husein, A.A.A. Hussein, M.G.A.A. Almosawy, Review on Effect of Chemical Waste on Environment, Journals Pub. 6 (2020).
[82] K.E. Fulla, M.A. Acedillo, F.R. Cruz, F. Valiente, Backside preparation by milling approach of module device for failure analysis, Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA. (2019) 1–6. https://doi.org/10.1109/IPFA47161.2019.8984896.
[83] S.D. Kencana, The Roles of Atmospheric Pressure Plasma System Driven on the Formation of Metal Oxide, National Taiwan University of Science and Technology, 2019.
[84] D.L. Flamm, M. Law, Plasma Etching of Si and SiO2—The Effect of Oxygen Additions to CF4 Plasmas, J. Appl. Phys. (1978). https://doi.org/10.1063/1.325382.
[85] H. Nabesawa, T. Hiruma, T. Hitobo, S. Wakabayashi, T. Asaji, T. Abe, M. Seki, Low-pressure plasma-etching of bulk polymer materials using gas mixture of CF4 and O2, AIP Adv. 3 (2013). https://doi.org/10.1063/1.4830277.
[86] NIST Atomic Spectra Database Lines Form, (n.d.). https://physics.nist.gov/PhysRefData/ASD/lines_form.html%0A.
[87] H. Puliyalil, G. Filipič, J. Kovač, M. Mozetič, S. Thomas, U. Cvelbar, Tackling chemical etching and its mechanisms of polyphenolic composites in various reactive low temperature plasmas, RSC Adv. 6 (2016) 95120–95128. https://doi.org/10.1039/c6ra15923k.
[88] J. Aveyard, J.W. Bradley, K. McKay, F. McBride, D. Donaghy, R. Raval, R.A. D’Sa, Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting, J. Mater. Chem. B. 5 (2017) 2500–2510. https://doi.org/10.1039/c7tb00113d.
[89] H. Puliyalil, U. Cvelbar, Selective plasma etching of polymeric substrates for advanced applications, Nanomaterials. 6 (2016). https://doi.org/10.3390/nano6060108.
[90] F. Rezaei, Y. Gorbanev, M. Chys, A. Nikiforov, S.W.H. Van Hulle, P. Cos, A. Bogaerts, N. De Geyter, Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers, Plasma Process. Polym. 15 (2018) 1–18. https://doi.org/10.1002/ppap.201700226.
[91] G. Garcia-Cosio, H. Martinez, M. Calixto-Rodriguez, A. Gomez, DC discharge experiment in an Ar/N2/CO2 ternary mixture: A laboratory simulation of the Martian ionosphere’s plasma environment, J. Quant. Spectrosc. Radiat. Transf. 112 (2011) 2787–2793. https://doi.org/10.1016/j.jqsrt.2011.09.008.
[92] P. Attri, F. Tochikubo, J.H. Park, E.H. Choi, K. Koga, M. Shiratani, Impact of Gamma rays and DBD plasma treatments on wastewater treatment, Sci. Rep. 8 (2018) 1–11. https://doi.org/10.1038/s41598-018-21001-z.
[93] Y.H. Kim, Y.J. Hong, K.Y. Baik, G.C. Kwon, J.J. Choi, G.S. Cho, H.S. Uhm, D.Y. Kim, E.H. Choi, Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution, Plasma Chem. Plasma Process. 34 (2014) 457–472. https://doi.org/10.1007/s11090-014-9538-0.
[94] P. Attri, Y.H. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm, K.N. Kim, A. Fridman, E.H. Choi, Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis, Sci. Rep. 5 (2015) 1–8. https://doi.org/10.1038/srep09332.
[95] M.T. Jamil, J. Ahmad, S.H. Bukhari, M.E. Mazhar, U. Nissar, A.J. Rao, H. Ahmad, G. Murtaza, Atmospheric pressure glow discharge (APGD) plasma generation and surface modification of aluminum and silicon si (100), Dig. J. Nanomater. Biostructures. 12 (2017) 595–604.
[96] K. Fricke, I. Koban, H. Tresp, L. Jablonowski, K. Schröder, A. Kramer, K.D. Weltmann, T. von Woedtke, T. Kocher, Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms, PLoS One. 7 (2012). https://doi.org/10.1371/journal.pone.0042539.
[97] Z. Kregar, A. Vesel, Monitoring Oxygen Plasma Treatment of Polypropylene With Optical Emission Spectroscopy, IEEE Trans. Plasma Sci. 39 (2011) 1239–1246.
[98] A. Bès, M. Koo, T.L. Phan, A. Lacoste, J. Pelletier, Oxygen plasma etching of hydrocarbon-like polymers: Part I Modeling, Plasma Process. Polym. 15 (2018). https://doi.org/10.1002/ppap.201800038.
[99] T. Tsutsumi, H. Kondo, M. Hori, M. Zaitsu, A. Kobayashi, T. Nozawa, N. Kobayashi, Atomic layer etching of SiO2 by alternating an O2 plasma with fluorocarbon film deposition, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 01A103. https://doi.org/10.1116/1.4971171.
[100] M. Yamamoto, T. Matsumae, Y. Kurashima, H. Takagi, Comparison of Argon and Oxygen Plasma Treatments for Ambient Room-Temperature Wafer-Scale Au – Au Bonding Using Ultrathin Au Films, Micromachines. (2019). https://doi.org/10.3390/mi10020119.
[101] N.C. Roy, M.R. Talukder, A.N. Chowdhury, OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet, Plasma Sci. Technol. 19 (2017). https://doi.org/10.1088/2058-6272/aa86a7.
[102] S.T. Tso, J.A. Pask, Reaction of Fused Silica with Hydrogen Gas, J. Am. Ceram. Soc. 65 (1982) 457–460.
[103] S. Huang, C. Huard, S. Shim, S.K. Nam, I.-C. Song, S. Lu, M.J. Kushner, Plasma etching of high aspect ratio features in SiO 2 using Ar/C 4 F 8 /O 2 mixtures: A computational investigation, J. Vac. Sci. Technol. A. 37 (2019) 031304. https://doi.org/10.1116/1.5090606.
[104] M.Y. Naz, S. Shukrullah, S.U. Rehman, Y. Khan, A.A. Al-Arainy, R. Meer, Optical characterization of non-thermal plasma jet energy carriers for effective catalytic processing of industrial wastewaters, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-82019-4.
[105] A. Chingsungnoen, J.I.B. Wilson, V. Amornkitbamrung, C. Thomas, T. Burinprakhon, Spatially resolved atomic excitation temperatures in CH4/H 2 and C3H8/H2 RF discharges by optical emission spectroscopy, Plasma Sources Sci. Technol. 16 (2007) 434–440. https://doi.org/10.1088/0963-0252/16/3/002.
[106] C. Alves, N.K.M. Galvão, A. Gregory, G. Henrion, T. Belmonte, OES during reforming of methane by microwave plasma at atmospheric pressure, J. Anal. At. Spectrom. 24 (2009) 1459–1461. https://doi.org/10.1039/b905323a.
[107] J. Liang, X. Zhou, Z. Zhao, W. Wang, D. Yang, H. Yuan, Reactive Oxygen and Nitrogen Species in Ar + N2 + O2 Atmospheric-pressure Nanosecond Pulsed Plasmas in Contact with Liquid, Phys. Plasmas. 26 (2019). https://doi.org/10.1063/1.5063707.
[108] M. Sode, W. Jacob, T. Schwarz-Selinger, H. Kersten, Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas, J. Appl. Phys. 117 (2015). https://doi.org/10.1063/1.4913623.
[109] L.M. Leidens, Â.E. Crespi, C.D. Boeira, F.G. Echeverrigaray, C.A. Figueroa, Hydrogen plasma etching mechanism at the a-C:H/a-SiC x :H interface: A key factor for a-C:H adhesion, Appl. Surf. Sci. 455 (2018) 1179–1184. https://doi.org/10.1016/j.apsusc.2018.05.203.
[110] A. Gardner, The Kinetics of Silica Reduction in Hydrogen, J. Solid State Chem. 9 (1974) 336–344.
[111] M. Satake, T. Iwase, M. Kurihara, N. Negishi, Y. Tada, H. Yoshida, Effect of oxygen addition to an argon plasma on etching selectivity of poly(methyl methacrylate) to polystyrene, J. Micro/Nanolithography, MEMS, MOEMS. 12 (2013) 041309. https://doi.org/10.1117/1.jmm.12.4.041309.
[112] A.J. Knoll, G.S. Oehrlein, Polymer etching by atmospheric-pressure plasma jet and surface micro-discharge sources : Activation energy analysis and etching directionality, Plasma Process. Polym. (2018) 1–15. https://doi.org/10.1002/ppap.201700217.
[113] Y.-J. Kim, J. Hah, K.-S. Moon, C.P. Wong, Novel Decapsulation Method for Silver-Based Wire-Bond Semiconductor Packages With High Reliability Using Mixed Salt–Acid Chemistry, IEEE Trans. Components, Packag. Manuf. Technol. 9 (2019) 1459–1465. https://doi.org/10.1109/tcpmt.2019.2923145.
[114] J. Tang, J. Wang, G.B. Anderson, J. Bruckmeier, C. Keller, G. V. Dela Cruz, K. Beenakker, CF4-free microwave induced plasma decapsulation of automotive semiconductor devices, Conf. Proc. from Int. Symp. Test. Fail. Anal. (2016) 151–160. https://doi.org/10.31399/asm.cp.istfa2016p0151.
[115] R. Schetty, Minimization of tin whisker formation for lead-free electronics finishing, IPC Work. Conf. (2001) 17–20.
[116] M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, C. Liu, R.J. Mortimer, The effect of electroplating parameters and substrate material on tin whisker formation, Microelectron. Reliab. 55 (2015) 180–191. https://doi.org/10.1016/j.microrel.2014.10.005.
[117] N. Bolouki, W.H. Kuan, Y.Y. Huang, J.H. Hsieh, Characterizations of a plasma-water system generated by repetitive microsecond pulsed discharge with air, nitrogen, oxygen, and argon gases species, Appl. Sci. 11 (2021). https://doi.org/10.3390/app11136158.
[118] B. Adhikari, M. Adhikari, B. Ghimire, G. Park, E.H. Choi, Cold Atmospheric Plasma-Activated Water Irrigation Induces Defense Hormone and Gene expression in Tomato seedlings, Sci. Rep. 9 (2019) 1–15. https://doi.org/10.1038/s41598-019-52646-z.
[119] B. Illés, O. Krammer, T. Hurtony, K. Dušek, D. Bušek, A. Skwarek, Kinetics of Sn whisker growth from Sn thin-films on Cu substrate, J. Mater. Sci. Mater. Electron. 31 (2020) 16314–16323. https://doi.org/10.1007/s10854-020-04180-2.
[120] K.N. Tu, J. Suh, A.T.-C. Wu, N. Tamura, C.-H. Tung, Mechanism and Prevention of Spontaneous Tin Whisker Growth, Springer Ser. Mater. Sci. 46 (2005) 2300–2308. https://doi.org/https://doi.org/10.2320/matertrans.46.2300.
[121] M. Inoue, I. Hirasawa, The relationship between crystal morphology and XRD peak intensity on CaSO4·2H2O, J. Cryst. Growth. 380 (2013) 169–175. https://doi.org/10.1016/j.jcrysgro.2013.06.017.
[122] C.H. Su, H. Chen, H.Y. Lee, C.Y. Liu, C.S. Ku, A.T. Wu, Kinetic analysis of spontaneous whisker growth on pre-treated surfaces with weak oxide, J. Electron. Mater. 43 (2014) 3290–3295. https://doi.org/10.1007/s11664-014-3182-6.
[123] Test Method for Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes, JEDEC Standard No. 22-A121A, (2019).
[124] Y. Fukuda, M. Osterman, M. Pecht, The effect of annealing on tin whisker growth, IEEE Trans. Electron. Packag. Manuf. 29 (2006) 252–258. https://doi.org/10.1109/TEPM.2006.887390.
[125] C.C. Wei, P.C. Liu, C. Chen, J.C.B. Lee, I.P. Wang, Relieving Sn whisker growth driven by oxidation on Cu leadframe by annealing and reflowing treatments, J. Appl. Phys. 102 (2007). https://doi.org/10.1063/1.2770832.
[126] C. Hillman, G. Kittlesen, R. Schueller, A New (Better) Approach to Tin Whisker Mitigation, 2012.
[127] W.C. Lin, T.H. Tseng, W. Liu, K.S. Huang, H. Chen, H.Y. Lee, C.S. Ku, A.T. Wu, Effect of Sn Film Grain Size and Thickness on Kinetics of Spontaneous Sn Whisker Growth, J. Miner. Met. Mater. Soc. 71 (2019) 3041–3048. https://doi.org/10.1007/s11837-019-03546-0.

無法下載圖示 全文公開日期 2025/09/22 (校內網路)
全文公開日期 2025/09/22 (校外網路)
全文公開日期 2025/09/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE