簡易檢索 / 詳目顯示

研究生: 葉耀崇
Yao-Chong Ye
論文名稱: 因應需量競價住宅型電能管理系統卸載策略之研究
Study on the Load Shedding Strategy of Residential Energy Management System for Demand Bidding
指導教授: 吳瑞南
Ruay-Nan Wu
口試委員: 張宏展
Hong-Chan Chang
謝宗煌
Tsung-Huang Hsieh
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 卸載策略電能管理系統動態規劃法需量競價
外文關鍵詞: Load Shedding Strategy, Energy Management System, Dynamic Programing, Demand Bidding
相關次數: 點閱:397下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於環保意識的提升,核能發電廠漸漸的被除役,使得台灣備用容量率也逐年降低,於是台電在民國104年提出了需量競價的需求面管理措施來降低尖峰用電量,而台電也指出低壓用戶用電量佔整個尖峰時段用電量的51%,因此,本研究建置一個住宅型的電能管理系統,目的是未來可以配合用戶群代表(Aggregator)的要求,使單一低壓用電戶匯集成群體用電戶,一起參加台電的需量競價措施,提高一般住宅用戶參與需量競價的可行度,使電能可以更有效率的使用。
    本研究以實驗室用電情形來模擬一般住宅用電戶的環境,透過儲能設備與卸載策略之管理的方式,有效的控制實驗室用電量。儲能設備以模擬的方式進行充放電,對負載用電量進行削峰填谷的動作,目的在於提高負載因數。為了在特定時段抑低用電量,本文擷取實驗室即時用電量,並建立成歷史資料庫,在參與需量競價日時,從歷史資料做負載預測,透過負載截峰線進行電池充放電,以及使用動態規劃法進行事前負載規劃,最後配合線上負載的排程,以確保能將用電量抑低至限制值。
    本研究藉由人機介面輸入需量競價參數後,實際以實驗室來試驗。儲能設備能有效達到削峰填谷的作用,且儲能設備充放電皆限制條件內,而參加需量競價時,無論限制值是固定型還是變化型,在事前規劃與線上排程都可以在抑低時段內將用電量抑低至限制值以下,達到需量競價的要求。


    In recent years, due to the awareness of environmental protection, nuclear power plants gradually being decommissioned make Taiwan's reserve capacity rate be decreasing year by year. To reduce spikes electricity consumption, Taipower proposed demand bidding of the demand side management strategy and Taipower also pointed out that low-voltage users account for 51% of the total peak power consumption. So, this study build a residential energy management system. The purpose is to cooperate the requirements of the Aggregator, so that a single low-voltage households can be pooled into a group of electricity households to participate in Taipower’s demand bidding strategy. Improve the feasibility of general residential users to participate in demand bidding, so that electricity can be used more efficiently.
    This study proposed the use of laboratory electricity to simulate the situation of general residential electricity users. Through the energy storage equipment and load shedding strategy, laboratory electricity consumption be controlled effectively. Our charge/discharge processes of the energy storage equipment is performed by simulation. We shift the peak load for the electricity consumption, which is to improve the load factor. In order to limit electricity consumption at a particular time, we capture the laboratory real-time electricity consumption, and established into a historical database. In the participation of the demand bidding day, we forecast the electricity consumption from the historical data, and energy storage equipment charges and discharges by the load peak line, and then use the dynamic programing method for load planning in advance. Finally, we use the online load of the schedule to ensure that the electricity consumption can be reduced to the limit.
    This study uses the human machine interface to enter the demand bidding parameters to experiment. Energy storage equipment can effectively achieve to shift the peak load, and energy storage equipment’s charge and discharge doesn’t exceed constraints. When we participate in the demand bidding, on the pre-planning and online scheduling, electricity consumption can be reduced to below the limit value in the period of limit. Regardless of the limit value is fixed or variety type. The experiment result shows that it can satisfy the requirements of the demand bidding.

    目錄 中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 3 1.3 章節概述 6 第二章 電能管理系統介紹 8 2.1 前言 8 2.2 家庭電能管理 9 2.3 儲能系統概述 11 2.3.1 蓄電池的介紹 12 2.3.2 鋰離子電池充放電特性 13 2.4 需求面管理 14 2.5 台電需量反應措施 15 2.5.1 時間電價與電費計算方式 16 2.5.2 減少用電措施 19 2.5.3 空調暫停用電措施 20 2.5.4 需量競價措施 21 第三章 硬體通訊的建立與介紹 25 3.1 家庭電能管理系統硬體架構 25 3.2 Modbus通訊協定 26 3.2.1 RS-232 28 3.2.2 RS-485 29 3.3 智慧型電表 30 3.3.1 PA3000智慧型電表 31 3.4 智慧型插座 33 3.4.1 LT-114智慧型插座模組 34 第四章 管理系統規劃 36 4.1 電能管理系統模型 36 4.2 負載預測介紹 37 4.2.1 迴歸分析模型 39 4.3 介紹截峰線與計算方法 41 4.3.1 目標函數及蓄電池限制條件 43 4.3.2 計算理想截峰線方式 45 4.3.3 預測截峰線 50 4.4 事前規劃介紹 52 4.4.1 家庭負載分類與優先度 53 4.4.2 事前負載規劃方法 55 4.4.3 動態規劃法 56 4.5 線上負載排程 61 第五章 實際模擬試驗 66 5.1 實驗環境設定 66 5.2 人機介面 68 5.3 模擬與實驗案例分析 70 5.3.1 實驗一 儲能電池充放電 70 5.3.2 實驗二 固定限制值 73 5.3.3 實驗三 變化型限制值 78 第六章 結論與未來研究方向 84 6.1 結論 84 6.2 未來研究方向 85 參考文獻 86 附錄 89

    [1] Jinsoo Han, Chang-Sic Choi, Wan-Ki Park, Ilwoo Lee and Sang-Ha Kim, “PLC-Based Photovoltaic System Management for Smart Home Energy Management System,” IEEE Transactions on Consumer Electronics, vol. 60, no. 2, pp. 184-189, May 2014.
    [2] Yuan Wu, Vincent K. N. Lau, Danny H. K. Tsang, Li Ping Qian, and Limin Meng, “Optimal Energy Scheduling for Residential Smart Grid with Centralized Renewable Energy Source,” IEEE Systems Journal, vol. 8, no. 2, pp. 562-576, June 2014.
    [3] Chaojie Li, Xinghuo Yu, Wenwu Yu, Guo Chen, and Jianhui Wang, “Efficient Computation for Sparse Load Shifting in Demand Side Management,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 250-261, Jan. 2011.
    [4] Ji Hoon Yoon, Ross Baldick and Atila Novoselac, “Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings ,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 121-129, Jan. 2016.
    [5] Benvindo R. Pereira, Geraldo R. Martins da Costa, Javier Contreras and José R. Sanches Mantovani, “Optimal Distributed Generation and Reactive Power Allocation in Electrical Distribution Systems,” IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 975-984, July 2013.
    [6] Nikolaos G. Paterakis, Ozan Erdinç, Iliana N. Pappi, Anastasios G. Bakirtzis and João P. S. Catalão, “Coordinated Operation of a Neighborhood of Smart Households Comprising Electric Vehicles, Energy Storage and Distributed Generation,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2736-2747, Nov. 2016.
    [7] M. J. E. Alam, Kashem M. Muttaqi and Danny Sutanto, “A Controllable Local Peak-Shaving Strategy for Effective Utilization of PEV Battery Capacity for Distribution Network Support, ” IEEE Transactions on Industry Application, vol. 5, no. 3, pp. 2030-2037, May 2015.

    [8] Marnix C. Vlot, Joris D. Knigge and J. G. HanSlootweg, “Economical Regulation Power Through Load Shifting With Smart Energy Appliances,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1705-1712, Sept. 2009.
    [9] 「智慧電網總體規劃方案」,經濟部能源局,2012年,取自http://web3.moeaboe.gov.tw/ecw/populace/content/wHandMenuFile.ashx?menu_id=1948。
    [10] D. M. Han, and J. H. Lim, “Design and Implementation of Smart Home Energy Management Systems Based on Zigbee, ” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1417-1425, Aug. 2010.
    [11] J. Han, C. S. Choi, W. K. Park, I. Lee and S. H. Kim, “Smart Home Energy Management System Including Renewable Energy Based on ZigBee and PLC,” IEEE Transactions on Consumer Electronics, vol. 60, no.2, pp. 198-202, May 2014.
    [12] 魏若芳,「串聯鋰離子電池組模組化電池管理系統研製」,碩士論文,國立台北科技大學,2011年。
    [13] 許志義,「智慧電能需求面管理效益與策略」,產業發展研究中心,2012年。
    [14] 林俊廷,「住宅儲能設備最佳容量決定之研究」,國立台灣科技大學,2014年。
    [15] 「詳細電價表」,台灣電力公司,2016年,取自http://www.taipower.com.tw/UpFile/_userfiles/file/詳細電價表(2).pdf。
    [16] 「需量反應負載管理措施)」,台灣電力公司,2017年1月,取自http://www.taipower.com.tw/UpFile/_userfiles/file。
    [17] 「深入了解Modbus協定」,美商國家儀器股份有限公司台灣分公司,取自http://www.ni.com/white-Paper/52134/zht/。
    [18] 李易霖,「支援需量反應功能之多回路集合電表設計」,國立中山大學電工程學系機系,2014年。
    [19] 「Modicon Modbus Protocol Reference Guide」,Modicon Inc,1996年,6月。
    [20] 許永和,「介面設計與實習,使用LabVIEW」,全華圖書,新北市,2012年。
    [21] 「2016台灣智慧電網技術產業介紹」,台灣智慧型電網產業協會,2016年9月。
    [22] 黃俊智,「具保護協調特性的智慧型插座之研製」,國立台灣科技大學,2013年。
    [23] 李展宇,「灰色預測應用於即時性住宅電能管理之研究」,國立台灣科技大學,2015年。
    [24] 黃敬淳,「平行式類神經網路電力負載預測系統模式化之研究」,東海大學,2005年6月。
    [25] 陳哲凱,「因應需量反應之住宅型能源管理系統研究」,國立台灣科技大學,2016年。
    [26] A. G. Paetz, T. Kaschub, P. Jochem and W. Fichtner, “Load-shifting potentials in households including electric mobility - A comParison of user behaviour with modelling results,” 2013 10th International Conference on the European Energy Market (EEM), Stockholm, pp.1-7, May 2013.
    [27] M. C. Vlot, J. D. Knigge and J. G. Slootweg, “Economical Regulation Power Through Load Shifting With Smart Energy Appliances,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1705-1712, Sept. 2013.
    [28] M. Alizadeh, Y. Xiao, A. Scaglione and M. van der Schaar, “Dynamic Incentive Design for ParticiPation in Direct Load Scheduling Programs,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 6, pp. 1111-1126, Dec. 2014.
    [29] S. Kahrobaee, S. Asgarpoor and Wei. Qiao, “Optimum Sizing of Distributed Generation and Storage CaPacity in Smart Households,” IEEE Transactions on Smart Grid, vol.4, no.4, pp.1791-1801, Dec. 2013.
    [30] Allen J. Wood, Bruce F. Wollenberg,「Power Generation Operation and Control」, Wiley-Interscience, 1996.

    QR CODE