簡易檢索 / 詳目顯示

研究生: 沈品忠
Pin-Zhong Shen
論文名稱: 封裝技術應用於5G毫米波的多層板天線陣列
Packaging process for 5G millimeter wave application of multilayer board antenna array
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 周錫增
Hsi-Tseng Chou
廖文照
Wen-Jiao Liao
黃建彰
Chien-Chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 微帶貼片天線天線陣列毫米波天線封裝技術
外文關鍵詞: microstrip antenna, antenna array, millimeter-wave antenna, packaging process
相關次數: 點閱:549下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是用多層板實現第5代行動通訊(5G)之毫米波天線,其工作頻段分別為24GHz到28GHz,以及37GHz到43.5GHz。進入5G後其工作頻率大幅提升,由於高頻率的電磁波在空氣傳播時,其路徑損耗較為嚴重。因此天線設計將採用陣列形式來提高增益,彌補路徑的損耗。為了減少傳輸線損耗與製程穩定度來提高良率,通過系統封裝(SiP, System-in-Package)與多層板疊構技術形成小尺寸且具穩定輻射特性之陣列天線封裝(Antenna-in-Package, AiP)。
本論文選擇了寬邊輻射(Broadside)的微帶天線(Microstrip antenna)為子天線,以4 x 4的規格設計陣列天線,增益可達到15dBi,並在多層的架構裡採用堆疊耦合的技術達到寬頻的效果,其頻寬足以覆蓋各個國家釋出的頻譜。
在用戶終端設備(Customer Premise Equipment)的應用中,本論文提出了以6 x 6天線陣列並且搭載射頻IC晶片,分別在28GHz、39GHz兩個頻帶可以達到高增益,以及寬角度的波束掃描效果。


This research used stacked multilayer dielectric substrates to realize the 5th generation of mobile communication (5G) millimeter wave antennas, and their work is divided into 24GHz to 28GHz, and 37GHz to 43.5GHz. After entering 5G, its operating frequency has been greatly increased. When high-frequency electromagnetic waves propagate through the air, its path loss is extremely serious.
Therefore, the antenna design will use an array to increase the gain and compensate for the path loss. To reduce transmission line loss and to improve process stability, a small-sized array antenna package (Antenna-in-Package) with stable radiation characteristics formed by system packaging (SiP, system-in-package) and multilayer board stacking technology AiP).
In this paper, the broadside radiating (Broadside) Microstrip Antenna was selected as the sub-antenna. The antenna was designed with a 4 x 4 specification, and the gain can reach 15dBi. In the multi-layer architecture, the technology of stacked patch is to achieve broadband. As a result, its bandwidth covers the spectrum released by all countries.
In the application of Customer Premise Equipment, this paper proposes a 6 x 6 antenna array, which added RFIC, which can achieve high gain and wide-angle multi-scanning effects at 28 GHz and 39 GHz, respectively.

摘要 i Abstract ii 致謝 錯誤! 尚未定義書籤。 目錄 iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 前言與動機研究 1 1.2 文獻探討 4 1.3 論文架構 6 第二章 天線理論 7 2.1 偶極天線與單極天線分析 7 2.2 微帶天線 13 2.3 陣列天線 18 第三章 多層板下的天線設計 21 3.1 多層板結構 21 3.1.1 多層板結構介紹 21 3.1.2 十層板結構的單一Patch天線 22 3.1.3 八層板結構的天線 27 3.1.4 封裝結構設計規則 30 3.2 天線陣列 33 3.2.1 28GHz 4x4陣列模擬 33 3.2.3 39GHZ 4X4陣列 41 3.3 AiP天線搭載主動模組整合 50 3.3.1 28GHz的6x6 天線陣列搭載主動IC 50 3.3.2 39GHz的6x6 天線陣列搭載主動IC 53 第四章 結論 56 參考文獻 57

[1] 3GPP Release 16 (July 2018). 3GPP The Mobile Broadband Standard [Online].
Available: https://www.3gpp.org/release-16

[2] Qualcomm, “Spectrum For 4G And 5G” [Online]. Available:
https://www.qualcomm.com/media/.../files/spectrum-for-4g-and-5g.pdf

[3] Y. Lu, B. Fang, H. Mi and K. Chen, "Mm-Wave Antenna in Package (AiP) Design Applied to 5th Generation (5G) Cellular User Equipment Using Unbalanced Substrate," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2018, pp. 208-213, doi: 10.1109/ECTC.2018.00040.

[4] Y. Lu, B. Fang, K. Chen, C. Lai and D. Jiang, "The Hybrid Stack-up with PTFE 5G Mm-Wave Antenna in Package (AiP)," 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2019, pp. 368-371, doi: 10.1109/EPTC47984.2019.9026649.

[5] Warren L. Stutzman, Gary A. Thiele, “Antenna Theory and Design” 3rd, John Wiley & sons,INC,1998

[6] D. Liu, X. Gu, C. W. Baks and A. Valdes-Garcia, "Antenna-in-Package Design Considerations for Ka-Band 5G Communication Applications," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6372-6379, Dec. 2017, doi: 10.1109/TAP.2017.2722873.

[7] J. Du et al., "Dual-polarized patch array antenna package for 5G communication systems," 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, 2017, pp. 3493-3496, doi: 10.23919/EuCAP.2017.7928848.

[8] H. Xia, T. Zhang, L. Li and F. Zheng, "A low-cost dual-polarized 28 GHz phased array antenna for 5G communications," 2018 International Workshop on Antenna Technology (iWAT), Nanjing, 2018, pp. 1-4, doi: 10.1109/IWAT.2018.8379132.

[9] W. Hong, A. Goudelev, K. Baek, V. Arkhipenkov and J. Lee, "24-Element Antenna-in-Package for Stationary 60-GHz Communication Scenarios," in IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 738-741, 2011, doi: 10.1109/LAWP.2011.2162640.

[10] G. Han, J. Yang, X. Chen, Y. Geng, Y. Zhang and W. Zhang, "Study on the Near Field Characteristic of Antenna in Package," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 9, pp. 1449-1454, Sept. 2012, doi: 10.1109/TCPMT.2012.2207721.

[11] M. Mosalanejad, S. Brebels, C. Soens and G. A. E. Vandenbosch, "Low-cost multi-layer antenna sub-array for 79 GHz short-range radar applications," in Electronics Letters, vol. 54, no. 18, pp. 1090-1091, 6 9 2018, doi: 10.1049/el.2018.5035.

[12] F. Croq and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," in IEEE Transactions on Antennas and Propagation, vol. 39, no. 12, pp. 1770-1776, Dec. 1991, doi: 10.1109/8.121599.

[13] S. E. Mendhe and Y. P. Kosta, "Broadband multilayer stacked rectangular micro strip patch antenna using edge coupled patches," 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, 2014, pp. 1-3, doi: 10.1109/ET2ECN.2014.7044926.

[14] S. D. Targonski, R. B. Waterhouse and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," in IEEE Transactions on Antennas and Propagation, vol. 46, no. 9, pp. 1245-1251, Sept. 1998, doi: 10.1109/8.719966.

[15] H. Lee, E. S. Li, H. Jin, C. Li and K. Chin, "60 GHz wideband LTCC microstrip patch antenna array with parasitic surrounding stacked patches," in IET Microwaves, Antennas & Propagation, vol. 13, no. 1, pp. 35-41, 9 1 2019, doi: 10.1049/iet-map.2018.5226.

[16] L. Wang, J. Wang and J. Shi, "Design of 4×4 meandering-fed stacked patch antenna array," 2018 International Workshop on Antenna Technology (iWAT), Nanjing, 2018, pp. 1-3, doi: 10.1109/IWAT.2018.8379221.

[17] X. Yang, P. Qin, Y. Liu, Y. Yin and Y. J. Guo, "Analysis and Design of a Broadband Multifeed Tightly Coupled Patch Array Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 2, pp. 217-220, Feb. 2018, doi: 10.1109/LAWP.2017.2780992.

[18] W. Yang, K. Ma, K. S. Yeo and W. M. Lim, "A Compact High-Performance Patch Antenna Array for 60-GHz Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 313-316, 2016, doi: 10.1109/LAWP.2015.2443054.

[19] Z. Chen and X. Zhu, "Integration of mm-wave Antennas on Fan-Out Wafer Level Packaging (FOWLP) for Automotive Radar Applications," 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Chengdu, China, 2019, pp. 168-169, doi: 10.1109/ICTA48799.2019.9012825.

[20] W. Hong, K. Baek and A. Goudelev, "Multilayer Antenna Package for IEEE 802.11ad Employing Ultralow-Cost FR4," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5932-5938, Dec. 2012, doi: 10.1109/TAP.2012.2214196.

[21] X. Gu et al., "A multilayer organic package with 64 dual-polarized antennas for 28GHz 5G communication," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 1899-1901, doi: 10.1109/MWSYM.2017.8059029.

[22] D. Dogan and G. Gultepe, "A beamforming method enabling easy packaging of scalable architecture phased arrays," 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, 2016, pp. 1-4, doi: 10.1109/ARRAY.2016.7832562.

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 2025/08/19 (校外網路)
全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE