簡易檢索 / 詳目顯示

研究生: 楊宗叡
Tzong-Ruey Yang
論文名稱: 再生粒料等級對混凝土工程性質之影響
Effects of Recycled Aggregate Grading on Engineering Properties of Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 林宜清
Yi -Ching Lin
黃然
Ran Huang
沈得縣
Der-Hsien Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 166
中文關鍵詞: 再生粒料筒壓強度熱傳導係數彈性模數
外文關鍵詞: recycled aggregate, crushing strength, thermal conductivity, elastic modulus
相關次數: 點閱:462下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究依「再生混凝土施工規範草案」粒料分級制度,探討各級再生粒料性質與拌製成再生混凝土之工程性質。研究中選用常重粒料、破碎混凝土、土資場再生粒料與市售紅磚等四種粒料製成H與N級粒料,使用預拌廠慣用摻料添加比例配比並選用兩種水膠比0.3及0.6,探討再生混凝土硬固性質;另外改變粗細粒料比例與利用複合材料理論測定N級再生粒料彈性模數。
    研究結果顯示,(1) 依「再生混凝土施工規範草案」再生粒料分類,H級粒料的筒壓強度約在7.56~13.35 MPa範圍之間,N級粒料的筒壓強度約在3.41~5.43 MPa範圍之間,其強度差異原因為不同再生粒料本身不同低比重與高吸水率性質所致。(2) 再生混凝土與一般混凝土相同,水膠比愈低則抗壓強度愈高,且依照H與N級粒料品質差異而有所差別,如56天齡期時,RH206之抗壓強度為30.11 MPa,RN206之抗壓強度28.05 MPa,但抗壓強度皆優於「再生混凝土施工規範草案」所規定之C級混凝土強度,這顯示規範所規定之內容相當嚴謹且保守。(3) 再生混凝土之熱傳導係數隨齡期變化較不顯著,而是隨著混凝土拌製粒料粒料等級還有再生粒料的含量有所關聯,RH2粒料時,熱傳導係數為2.23 W/m.K;RN2粒料時,熱傳導係數為1.93 W/m.K,RN20340到RN20360之熱傳導係數為2.06 W/m.K下降到1.68 W/m.K。(4) 再生混凝土之彈性模數會隨著再生粒料含量增加而降低之外,且會隨粒料品質差異而改變,如RN20340到RN20360之彈性模數為27.44 GPa下降到20.73 GPa,且RN2組相對RH1組彈性模數損失率為16.24%增加到32.63%。(5) 使用Yang’s Model複合材料理論計算再生粒料彈性模數,RH1粒料之彈性模數約為41.28GPa,且N級粒料的彈性模數範圍約在10.34 GPa到27.86 GPa之間。


    This paper, studied the engineering properties of recycled coarse aggregate and recycled concrete following the regulation specified in the “Draft of Construction Specification for Recycled Concrete” of Taiwan. Four kinds of coarse aggregate, natural aggregate, recycle aggregate from lab, recycle aggregate from field and brick, were used to manually produce the H- and N- classes recycled aggregate. For the experiment work on the mechanical properties of concrete, pozzolanic materials were added according to the common mixture proportion used by commercial ready mixed concrete plants. The water-to-cementious materials ratios (w/c) were controlled to be 0.3 and 0.6. The elastic moduli of N-class recycled aggregate were investigated by change the volume ratios of recycled coarse aggregate to total aggregate and calculated by the theory of composite materials.
    Research results show that: (1) Following the grading specified in the “Draft of Construction Specification for Recycled Concrete”, the crushing strength of H-class recycled aggregate is between 7.56 ~13.35MPa; and N-class recycled aggregate is between 3.41 ~5.43MPa. The strength difference results from different low specific weight and high absorption property of different recycled aggregates. (2) Same as normal concrete, recycled concrete with low w/c ratio obtains higher compressive strength. The compressive strengths also vary with the grading of H-and N-class aggregate. For example, the compressive strength of RH206 is 30.11 MPa, and 28.05 MPa for RN206 at age of 56 days. It revealed that the “Draft of Construction Specification for Recycled Concrete” is conscientious and conservative since the compressive strengths of all specimens were higher than those specified in the regulation of C-class recycled concrete. (3) The thermal conductivity of recycled concretes were not changed with ages, but varied with grades and content of recycled aggregate. For example, at the w/c ratio equal to 0.3, the thermal conductivity is 2.23 W/m•k for concrete mixed with RH2 aggregate,1.93 W/m•k with RN2 aggregate. When the recycle aggregate content was changed from 40% to 60%, the thermal conductivities were varied from 2.06 to 1.68 W/m•k. (4) The Elastic modulus of recycled concrete is decreased with the increase of recycled aggregate content and varied with aggregate grade. For example, at the w/c ratio equals to 0.3 concretes mixed with RN2 recycled aggregate, with the content changed from 40% to 60%, the elastic modulus of concretes were varied from 27.44 to 20.73 GPa. The loss ratios of elasticity modulus between RH1 and RN1 are 16.24% to 32.63%. (5) Using the theory of composite material (Yang’s Model) to estimate elastic modulus of recycled aggregate, the elastic modulus of concrete with RH1 aggregate is 41.28 GPa and the elastic moduli of concrete with N class aggregate are varied from 10.34 to 27.86 GPa.

    總目錄 中文摘要 英文摘要 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1 再生混凝土的發展 2.2 再生粒料性質 2.2.1 比重、吸水率、單位重 2.2.2 孔隙率 2.3 再生混凝土新拌性質 2.3.1 工作性、需水量、坍度損失 2.4 再生混凝土硬固性質 2.4.1 單位重 2.4.2 抗壓強度 2.4.3 彈性模數 2.4.4 波松比 2.5 熱傳導係數 2.5.1 水分含量飽和程度之影響 2.5.2 單位重 2.5.3粒料種類 第三章 複合材料彈性模數之預測模式 3.1 前言 3.2 簡單複合材料理論 3.2.1 並聯模式 3.2.2 串聯模式 3.2.3 Hirsch-Dougill模式 3.2.4 Popovics模式 3.2.5 Counto模式 3.2.6 Hashin模式 3.3 單一置入物複合材料理論模式 第四章 試驗計畫 4.1 實驗內容與流程 4.2 實驗材料 4.3 實驗儀器 4.3.1 粒料強度試驗 4.3.2 混凝土硬固試驗 4.3.3 混凝土彈性係數與卜松比試驗 4.4 試驗變數及配比 4.5 試驗項目及實驗方法 4.5.1 試驗項目 4.5.2 試驗方法 第五章 結果分析與討論 5.1 再生粒料基本性質 5.1.1 比重、吸水率及單位重 5.1.2 粗粒料強度 5.2 再生混凝土新拌性質 5.2.1 工作性 5.2.2 新拌單位重 5.3 混凝土硬固性質 5.3.1 抗壓強度 5.3.2 超音波波速 5.3.3 動態彈性模數與動態剪力模數 5.3.4 熱傳導係數 5.3.5 表面電阻係數 5.3.6 靜彈性模數與卜松比 5.4 再生粒料力學性質 5.4.1 複合材料彈性模數 5.4.2 理論計算值與試驗值之差異 5.4.3 粒料性質與粒料彈性模數關係 第六章 結論與建議 6.1 結論 6.2 建議 叁考文獻 134 附錄A:砂漿基材應力-應變曲線圖 附錄B:各試驗組應力-應變曲線圖

    1.Hansen, T.C. and E. K. Lauritzen, Concrete Waste in a Global Perspective. ACI International SP-219, Recycling Concrete and Other Materials for Sustainable Development, 2004: pp. 35~46.
    2.Baker, R., and K. Sagoe-Crentsil, CSIRO Research Update:Construction & Demolition Waste. Building Innovation & Construction Technology, 2000. 12.
    3.HB155-2002, Guide to the Use of Recycled Concrete and Masonry Materials, in Standards Australia. 2002.
    4.DIN-1045, Concrete and Reinforced Concrete ; Design and execution, in German Code 1998.
    5.Lauritzen, E.K., Recycling Concrete - An Overview of Challenges and Opportunities. ACI International SP-219 Recycling Concrete and Other Materials for Sustainable Development, 2004: p. 1~10.
    6.內政部營建署, 「營建剩餘土石方資訊服務中心」網站:http://140.96.175.34/spoil/.
    7.葉祥海,內政部建築研究所,「再生混凝土施工規範草案之研擬」,2006年。
    8.Hansen, T.C. and H. Narud, Strength of Recycled Concrete Made from crushed concrete Coarse Aggregate. Concrete International: Design and Construction, 1983. 5(1): pp. 79-83.
    9.Buck, A.D., Recycle Concrete as a source of aggregate. Journal of The American Concrete Institute, 1977. 74(5): pp. 212-219.
    10.Ray, G.K., New Pavement from Old Concrete. Civil Engineering (New York), 1985. 55(5): pp. 56-58.
    11.顏聰、黃玉麟、陳豪吉, 「混凝土廢棄料回收再生利用之研究」. 內政部建築研究所專題計畫研究成果報告, 1997.
    12.佐藤 健 , 賴., 「日本廢棄混凝土塊回收砂石粒料之技術與經驗」. 台灣礦業, 2002. 54(3): pp. 52-70.
    13.魏立帆(黃兆龍指導), 「再生粒料應用於高性能混凝土工程性質之研究」. 國立台灣科技大學碩士論文, 台北 (2004).
    14.蘇南、王博麟, 「廢混凝土回收粗粒料品質與再生混凝土工程性質之探討」. 中國土木水利工程學刊, 2000. 12(3): pp. 435-444.
    15.廖惇治(陳豪吉指導), 「磚類建材應用於再生凝土之探討」. 國立中興大學土木工程研究所碩士論文, 台中 (2001).
    16.Johnston, C.D., Waste Glass as Coarse Aggregate for Concrete. Journal of Testing & Evaluation, 1974. 2(5): pp. 344-350.
    17.Chen, H.-J., T. Yen, and K.-H. Chen, Use of building rubbles as recycled aggregates. Cement and Concrete Research, 2003. 33(1): pp. 125-132.
    18.Limbach, M., Construction and Demplition Waste Recycling for Reuse as Aggregate in Concrete Production. Kingston University, London (2003).
    19.Topcu, I.B. and S. Sengel, Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 2004. 34(8): pp. 1307-1312.
    20.Mukai, T., and M. Kikuchi, Fundamental Study on Bond Properties between Recycled Aggregate Concrete and Steel Bar. Cement Association of Japan, 32nd Review 1978.
    21.Poon, C.S., et al., Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 2004. 34(1): pp. 31-36.
    22.符哲武(趙文成指導), 「再生粗粒料用以生產高流動化混凝土之可行性與其工程性質研究」. 國立交通大學土木工程研究所碩士論文, 新竹 (2001).
    23.Tu, T.-Y., Y.-Y. Chen, and C.-L. Hwang, Properties of HPC with recycled aggregates. Cement and Concrete Research, 2006. 36(5): pp. 943-950.
    24.Xiao, J., J. Li, and C. Zhang, Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 2005. 35(6): pp. 1187-1194.
    25.Poon, C.S., Z.H. Shui, and L. Lam, Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 2004. 18(6): pp. 461-468.
    26.黃然,徐振翔, 粒料特性對於高性能混凝土內部結構及工程性質影響之研究. 行政院國家科學委員會專題研究計畫成果報告,計畫編號:NEC 83-0410-E-019-006, 1995.
    27.張世健(顏聰指導), 再生混凝土之製造及性質研究. 國立中興大學土木工程研究所碩士論文, 台中 (1997).
    28.陳豪吉、彭獻生、許書王, 「再生混凝土力學性質之探討」. 中國土木水利工程學刊, 2003. 15(4): pp. 869-876.
    29.Gomez-Soberon, J.M.V., Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cement and Concrete Research, 2002. 32(8): pp. 1301-1311.
    30.Senthamarai, R.M. and P. Devadas Manoharan, Concrete with ceramic waste aggregate. Cement and Concrete Composites, 2005. 27(9-10): pp. 910-913.
    31.Lin, T. D. Ellingwood, B. and Piet, 0.”Flexural and Shear Behavior of Reinforced Concrete Beams During Fires Tests”, Portland Cement Association Research and Development bulltin RD 091T, NOV, 1987..
    32.歐書豪(張大鵬指導),礦物摻料及蒸汽養護對不同配比水泥砂漿熱傳導性質之影響,國立台灣科技大學碩士論文,民國92年。
    33.Kim, J. K., K. H. Kim, J. K. Yang, “ Thermal Analysis of Hydration Heat in Concrete Structures with Pipe-cooling System,” Computers and Structures, Vol. 79, No.2, pp. l63-171, 2001.
    34.Brown, T. D. and Javaid, M. Y.”The Thermal Conductivity of Fresh Concrete,” Materials and Structures, V. 3, No. 18. pp.411~416. 1970
    35.莊昆斌(張大鵬指導),蒸氣養護對不同爐石添加量自充填混凝土熱學性質及工程性質之研究,國立台灣科技大學碩士論文,民國93年。
    36.Hirth, Thermal Properties of Concrete at Extreme Temperatures. Doctor of philosophy in Eny, inG,D, of The University of California, Berkeley,1982.
    37.ACI Committee-211.1, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. Manual of Concrete Practice. 1988. 34.
    38.Kim, K.-H., et al., An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 2003. 33(3): pp. 363-371.
    39.Mindess, S., J.F. Young, and D. Darwin, Concrete, ed. Second.
    40.Hansen, T.C., Strength,Elasticity and Creep as related to the Internal Structure of Concrete. Chemistry of Cement, Proceedings of the Fourth International Symposium,Monograph 43, Washington 1960. 2: pp. 709-723.
    41.Hirsch, T.J., Modulus of Elasticity of Concrete Affected by Elastic Moduli of Cement Paste Martrix and aggregate. ACI Journal, Feb.1962. 59: pp. 427-451.
    42.Popovics, S. and M. Erdey, Estimation of the modulus of elasticity of concrete-like composite materials. Materials and Structures, 1970. 3(4): pp. 253-260.
    43.De Larrard, F., Formulation et proprietes des beton a tres haute performance. Rapport de recherche L.P.C., Paris,Mar.1988. 149: p. 335.
    44.Alexander, M.G. and D.E. Davics, Properties of Aggregate in Concrete. Hippo Quarries Technical Publications, Witwatersrand, South Africa 1989: p. 44.
    45.Yang, C.C., et al., Theoretical Approximate Elastic Moduli of Concrete Material. The Chinese Journal of Mechanics, 1995. 11(1).
    46.Mori, T. and K. Tanaka, Average Stress in Matrix and Average Energy of Materials with Misfitting Inclusions. Acta Metall, 1973. 21: pp. 571-574.

    無法下載圖示 全文公開日期 2013/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE