簡易檢索 / 詳目顯示

研究生: 汪子暄
Tzu-Hsuan Wang
論文名稱: 稀土元素(氧化釔)含量對Ti-6Al-4V表面被覆碳化矽粉末之微結構與磨潤行為的影響
Effects of Rare Earth Element Y2O3 on the Microstructure and Wear Behaviors of Ti-6Al-4V Cladding with SiC
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Sz-Hai Shiang
郭俊良
Jiun-Liang Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 171
中文關鍵詞: 氬銲被覆層鈦合金碳化矽氧化釔磨耗
外文關鍵詞: Gas tungsten arc welding(GTAW), Coating, Ti-6Al-4V, Silicon carbide, Yttrium oxide, Wear
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文將不同比例之稀土元素氧化釔(Y2O3)添加至主要陶瓷粉末碳化矽(SiC)及金屬粉末(Ni)當中混合均勻,進行氬銲被覆(Gas tungsten arc welding;GTAW)於Ti-6Al-4V鈦合金表面,探討不同比例之稀土元素對顯微組織、機械性質的影響,接著使用迴轉式磨耗試驗機以銷對盤(Pin-on-Disc)的線接觸方式進行磨耗試驗,評估被覆層的耐磨耗能力。
研究結果顯示,當碳化矽粉末(SiC)與不同比例(0%、2.5%、4.5%、6.5%)之氧化釔(Y2O3)混合時,所形成的被覆層皆會臨場(in-situ)合成TiC顆粒狀、樹狀析出物及TiSi2塊狀析出物。隨著氧化釔的添加,析出物數量增加且密集,但過量的氧化釔,卻會導致析出物的量減少。
磨耗試驗顯示不同成份的被覆層皆能改善Ti-6Al-4V鈦合金表面的耐磨耗能力,而且添加氧化釔有助於提升耐磨耗能力。在最大接觸應力263MPa的條件下,80%SiC+17.5%Ni+2.5%Y2O3被覆層有最佳的耐磨耗能力,因其H/E值為所有被覆層中最高,意即接觸表面受力後易產生彈性變形,而降低真實接觸應力,因此其磨耗量最低且摩擦係數穩定;在最大接觸應力339MPa的條件下,80%SiC+17.5%Ni+4.5%Y2O3被覆層有最優的耐磨耗能力,因強化相的密集分佈,使其磨耗量最低。


This study elucidates the effect of the percentage of Y2O3 on the microstructure and tribological performance of Ti-6Al-4V that is clad in SiC and Ni powder, using gas tungsten arc welding(GTAW). The microstructure, reinforcing phase, mechanical properties were analyzed using SEM, EDS, XRD, EPMA, Vickers hardness tester and Nanoindenter. In addition, a pin-on-disc rotating tribometer was used to evaluate he wear resistance of the substrate and the clad specimens.
According to the experimental results, TiC and TiSi2 precipitates are formed in situ in the clad layer during the cladding process. Adding a suitable amount of Y2O3 promotes the formation of reinforcing phases, but an excessive amount of Y2O3 reduces the formation of reinforcing phases.
The wear test results indicate that all the clad layers improve the wear resistance of Ti-6Al-4V, and the wear resistance of the clad layer that contained Y2O3 is better than that of the clad layer without Y2O3. Under the condition of contact stress of 263 MPa, the 80%SiC+17.5%Ni+2.5%Y2O3 clad layer has the best wear resistance because the wear loss of 80%SiC+17.5%Ni+2.5%Y2O3 clad layer is the lowest among all the clad layers. Under the condition of a contact stress of 339 MPa, the 80% SiC+15.5%Ni+4.5%Y2O3 clad layer has the best wear resistance because the formation of plenty of reinforcing phases, which reduce the wear loss of the 80%SiC+15.5%Ni+4.5%Y2O3 clad layer.

摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 前言 1 第二章 文獻回顧 3 2-1 表面被覆技術介紹 3 2-2 惰性氣體鎢極電弧銲被覆 5 2-3 熔融銲接的凝固特徵與型態 6 2-3-1 顯微結構 6 2-3-2 銲道外觀型態 8 2-4 陶瓷粉末的特性 9 2-4-1 碳化矽(SiC)的特性 9 2-4-2 碳化矽(SiC)表面被覆的相關研究 10 2-5 稀土元素 11 2-5-1 稀土元素的種類 11 2-5-2 稀土元素的相關研究 12 2-5-3 氧化釔(Y2O3) 13 2-6 被覆層強化機構 14 2-6-1 固溶強化(Solid solution strengthening) 14 2-6-2 析出硬化(Precipitation strengthening) 14 2-6-3 散佈強化(Dispersion strengthening) 15 2-6-4 細晶粒強化(Fine grain size strengthening) 15 2-6-5 麻田散鐵強化(Martensite strengthening) 15 2-7 磨耗機構 17 2-7-1 刮磨磨耗(Abrasive wear) 18 2-7-2 黏著磨耗(Adhesive wear) 20 2-7-3 氧化磨耗(Oxidative wear) 20 2-7-4 剝層磨耗(Delamination Wear) 21 2-7-5 疲勞磨耗(Fatigue wear) 22 第三章 實驗方法與步驟 24 3-1 實驗步驟 24 3-2 試片製作 26 3-2-1 被覆用基材 26 3-2-2 被覆粉末 27 3-2-3 被覆粉末的粒徑量測 27 3-2-4 預敷銲條 29 3-3氬銲被覆程序 31 3-3-1 氬銲被覆參數 31 3-3-2 被覆試片之中心點校正 32 3-4 磨耗試片製作 32 3-4-1 磨耗上試片 32 3-4-2 磨耗下試片 33 3-5 實驗設備與分析儀器介紹 36 3-5-1 分析設備 36 3-5-2 磨耗試驗機 38 3-6 顯微組織分析及機械性質測試 39 3-6-1 被覆層金相組織的觀察 39 3-6-2 被覆層機械性質測試 39 3-7 磨耗試驗 42 3-7-1 磨耗試驗機的校正 42 3-7-2 磨耗試驗機參數設定 42 3-7-3 接觸應力的計算 43 3-7-4 磨耗量的觀察與計算 45 3-7-5 磨耗表面的形貌觀察 46 第四章 結果與討論 47 4-1 入熱量對被覆層表面形貌之影響 47 4-1-1 入熱量對被覆層表面之影響 47 4-1-2 氧化釔的比例對被覆層稀釋率的影響 49 4-2 被覆層的顯微組織及成份分析 51 4-2-1 80%SiC+20%Ni被覆層 51 4-2-2 80%SiC+17.5%Ni+2.5%Y2O3被覆層 63 4-2-3 80%SiC+15.5%Ni+4.5%Y2O3被覆層 75 4-2-4 80%SiC+13.5%Ni+6.5%Y2O3被覆層 86 4-3 被覆層顯微組織比較 97 4-4 被覆層的硬度分佈 99 4-4-1 維克氏硬度試驗 99 4-4-2 奈米壓痕試驗 102 4-5 基材與被覆層的磨耗形貌及磨耗行為分析 109 4-5-1 Ti-6Al-4V鈦合金之耐磨耗能力評估 109 4-5-2 80%SiC+20%Ni被覆層之耐磨耗能力評估 116 4-5-3 不同比例之稀土元素氧化釔(Y2O3)於最大接觸應力263MPa下其耐磨耗能力評估 122 4-5-4 不同比例之稀土元素氧化釔(Y2O3)於最大接觸應力339MPa下其耐磨耗能力評估 135 4-5-5 各被覆層耐磨耗能力評估 144 第五章 結論與建議 146 5-1 結論 146 5-2 建議 147 參考文獻 148 附錄一 153

1. K. Holmberg and A. Matthews, “Coatings tribology: properties, techniques and applications in surface engineering”, Amsterdam, Elsevier, 1994.
2. 周長彬、蘇程裕、蔡丕椿、郭央諶,銲接學,全華圖書股份有限公司
3. J.F. Lancaster, “Metallurgy of welding”, London, Chapman & Hall, 1993.
4. S. Lu, H. Fujii, H. Sugiyama, M. Tanaka and K. Nogi, “Weld penetration and Marangoni convection with oxide fluxes in GTA welding”, Materials Transactions, vol. 43, no. 11, pp. 2926-2931, 2002.
5. C.R. Heiple, J.R. Roper, R.T. Stagner and R.J. Aden, “Surface active element effects on the shape of GTA, laser and electron beam welds”, Weld. J., vol. 62, no. 3, p. 72, 1983.
6. J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders and S.B. Warner, “The Science and Design of Engineering Materials”, USA, WCB/McGraw-Hill, 1999.
7. “Material Properties Charts”, available at: http://www.micro-ceramics.co.il/Materials_f.htm, Israel, 2012
8. 林育奇,Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究,國立臺灣科技大碩士學位論文,2010
9. F. Weng, H. Yu, J. Liu, C. Chen, J. Dai and Z. Zhao, “Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V”, Optics & Laser Technology, vol. 92, pp. 156-162, 2017.
10. 鄭子樵、李紅英,稀土功能材料,曉園出版社,2006
11. J. Li, H. Wang, M. Li and Z. Yu, “Effect of yttrium on microstructure and mechanical properties of laser clad coatings reinforced by in situ synthesized TiB and TiC”, Journal of rare earths, vol. 29, no. 5, pp. 477-483, 2011.
12. 曾士榮,AISI 1020低碳鋼表面被覆氮化矽陶瓷粉末及合金元素添加不同比例稀土元素氧化釹之微結構與耐磨耗研究,國立臺灣科技大學碩士學位論文,2016
13. Y. Ma, H. Zhu, C. Sun, B. Liao, L. Shen, B. He, W. Zhu and X. Wang, “Microstructure and Properties of Y2O3-doped Laser Cladded Composite Coating on TC4 Titanium Alloy”, Surface Technology, vol. 46, pp. 238-243, 2017.
14. T. Chen, D. Liu, F. Wu and H. Wang, “Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding”, Materials, vol. 11, no. 1, p. 58, 2017.
15. G.E. Dieter, “Mechanical metallurgy”, New York, McGraw-Hill, 1988.
16. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,工程材料科學,全華科技圖書股份有限公司,1996
17. D.R. Askeland and P.P. Phule, “Essentials of Materials Science and Engineering”, USA, Cengage learning, 2004.
18. K.H. Zum Gahr, “Microstructure and wear of materials”, Elsevier, 1987.
19. G.W. Stachowiak and A.W. Batchelor, “Engineering TriBology”, Elsevier, 2014.
20. T.F.J. Quinn, J.L. Sullivan and D.M. Rowson, “Origins and development of oxidational wear at low ambient temperatures”, Wear, vol. 94, no. 2, pp. 175-191, 1984.
21. T.F.J. Quinn and W.O. Winer, “An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire”, Journal of Tribology, vol. 109, no. 2, pp. 315-319, 1987.
22. C. Lifang, Y. Zhang and S. Likai, “Microstructure and formation mechanism of titanium matrix composites coating on Ti-6Al-4V by laser cladding”, Rare Metals, vol. 26, no. 4, pp. 342-346, 2007.
23. T.F.J. Quinn, “Computational methods applied to oxidational wear”, Wear, vol. 199, no. 2, pp. 169-180, 1996.
24. T.F.J. Quinn, “Oxidational wear modelling: I”, Wear, vol. 153, no. 1, pp. 179-200, 1992.
25. T.F.J. Quinn, “Oxidational wear modelling: Part II. The general theory of oxidational wear”, Wear, vol. 175, no. 1-2, pp. 199-208, 1994.
26. T.F.J. Quinn, “Oxidational wear modelling Part III. The effects of speed and elevated temperatures”, Wear, vol. 216, no. 2, pp. 262-275, 1998.
27. T.F.J. Quinn, “The oxidational wear of low alloy steels”, Tribology International, vol. 35, no. 11, pp. 691-715, 2002.
28. M. Vardavoulias, “The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials”, Wear, vol. 173, no. 1-2, pp. 105-114, 1994.
29. N.P. Suh, “The delamination theory of wear”, Wear, vol. 25, pp. 111-124, 1973.
30. 趙永慶、陳永楠、張學敏、曾衛東、王磊,鈦合金相變及熱處理,中南大學出版社,2012
31. R. Wanhill and S. Barter, “Fatigue of beta processed and beta heat-treated titanium alloys”, Springer Science & Business Media, 2011.
32. Y.C. Lin and Y.H. Cho, “Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ”, Surface and Coatings Technology, vol. 203, no. 12, pp. 1694-1701, 2009.
33. 貴重儀器介紹,available at: http://www.cic.ntust.edu.tw/impo.php
34. “TI950 TriboIndenter User Manual”, Hysitron, 2014.
35. 黃靖媛,超深冷處理程序對於不同鋼材微觀結構與硬度及耐磨耗能力,國立臺灣科技大學碩士學位論文,2016
36. X.H. Wang, S.L. Song, S.Y. Qu and Z.D. Zou, “Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process”, Surface and Coatings Technology, vol. 201, no. 12, pp. 5899-5905, 2007.
37. Y. Wu, A.H. Wang, Z. Zhang, R.R. Zheng, H.B. Xia and Y.N. Wang, “Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy for the improvement of bioactivity”, Applied Surface Science, vol. 305, pp. 16-23, 2014.
38. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams”, pp.890, pp.3370, USA, 1990.
39. B. Gaspar, “Microstructural characterization of Ti-6Al-4V and its relationship to sample geometry”, 2012.
40. K.L. Wang, Q.B. Zhang, M.L. Sun and X.G. Wei, “Microstructural characteristics of laser clad coatings with rare earth metal elements”, Journal of materials processing technology, vol. 139, no. 1-3, pp. 448-452, 2003.
41. Y.V. Milman, B.A. Galanov and S.I. Chugunova, “Plasticity characteristic obtained through hardness measurement”, Acta metallurgica et materialia, vol. 41, no. 9, pp. 2523-2532, 1993.
42. S. Zhang, D. Sun, Y. Fu and H. Du, “Toughness measurement of thin films: a critical review”, Surface and Coatings Technology, vol. 198, no. 1-3, pp. 74-84, 2005.
43. J. Guo, H. Wang, F. Meng, X. Liu and F. Huang, “Tuning the H/E* ratio and E* of AlN coatings by copper addition”, Surface and Coatings Technology, vol. 228, pp. 68-75, 2013.

無法下載圖示 全文公開日期 2023/08/22 (校內網路)
全文公開日期 2033/08/22 (校外網路)
全文公開日期 2033/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE