簡易檢索 / 詳目顯示

研究生: 謝安和
An-Ho Hsieh
論文名稱: 二氧化銥之氣體感測性質以及濺鍍金屬之影響
The Gas Sensing properties of the Iridium Dioxide Sensor and the effect of sputtered metal
指導教授: 劉進興
Chin-hsin Liu
口試委員: 蔡大翔
Dah-Shyang Tsai
江志強
Jyh-Chiang Jiang
施正雄
Jeng-Shong Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 氣體感測有機金屬化學氣相沈積法二氧化銥壓電石英晶體微天平法
外文關鍵詞: QCM, Gas sensor, MOCVD, IrO2
相關次數: 點閱:349下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用化學氣相沉積方式,在鍍於石英晶片上之金電極表面沉積二氧化銥,以此製作QCM質量式感測器,針對有機揮發性(VOC)氣體進行感測。我們發現,在IrO2上濺鍍金(Au)薄層,可以提高IrO2氣體感測器之靈敏度及應答速度。
    二氧化銥成長部份,我們探討不同前驅物濃度與基板溫度對於二氧化銥成長的影響。發現沈積所得之IrO2有奈米管(nanotube)、奈米葉(nanoblade)、未完成之奈米管(incomplete-nanotube)、葉片多層柱(layered-column)等多種型態,在高前驅物濃度與高基板溫度下則形成薄膜(Film)。適合氣體感測的IrO2之沉積條件是:基板溫度約在350~ 400 ℃;前驅物溫度在80~95℃之間。
    QCM感測部分,IrO2對酸類氣體的靈敏度最高,以丙酸而言,可偵測至20ppm以下。在可逆性方面,對胺類、醇類、芳香族類等之感測,都有部分不可逆現象,酸類氣體感測之則可逆性高達90%以上,尤以丙酸幾近完全可逆最高;在應答速度方面,以烷類之感測最快,t80在134-173 sec之間,丙酸感測之t80則為124sec。IrO2對酸類氣體,尤其是丙酸之感測,為靈敏度高、應答速度快之可逆吸附,具實用性。
    金屬金對氣體感測之影響方面,濺鍍Au在IrO2上,感測辛烷及間二甲苯之靈敏度明顯提高,應答時間縮短。以感測1000ppm辛烷為例,訊號由35Hz增加至108Hz;t80由144sec縮短為90sec。研究顯示溅鍍金屬可增加IrO2感測靈敏度,加快應答速度,提高IrO2感測能力。
    我們也以雙重吸附模式,分析IrO2對各種VOC氣體之恆溫吸附曲線,並計算Langmuir model中之特異性吸附位置Am與吸附常數KLangmuir,以及Henry model中之非特異吸附常數KHenry。
    濺鍍金屬白金(Pt)在IrO2上,也跟金一樣,可以提高氣體感測靈敏度及應答速度。


    In this thesis we investigated the metal organic chemical vapor deposition (MOCVD) deposition of iridium oxide onto the gold electrode on the piezoelectric quartz crystal for gas sensor. The gas sensing of volatile organic compound (VOC) was carried out with the quartz crystal microbalance (QCM) technique, and the effect of sputtered metal on the sensing property of IrO2 was also studied.

    For the deposition, the effects of precursor concentration and substrate temperature (Ts) on the iridium oxide growth were investigated. We found that IrO2 exhibit several morphologies, such as nanotube, nanoblade, incomplete-nanotube, and layered-column, while the film structure was found at high precursor concentration and high substrate temperature. The deposition condition for IrO2, which was suitable for gas sensing, where found to be Ts=350-400℃, and the precursor reservoir temperature in the range of 80-90℃.

    For QCM gas sensing, we found that IrO2 shows the high sensitivities for organic acid vapors. The sensing of the organic acid vapor s also shows fast response and high reversibility(>90%), while the amines irreversible. The sensing of the propionic acid vapor by IrO2 was found to be completely reversible, with the response time t80=124 seconds, and the detectable limit below 20 ppm.

    When gold was sputtered on IrO2, we found that its VOC sensitivity and response speed were both improved, particularly for octane and m-xylene vapors. For example, in the sensing of the octane vapor, Δf of Au/IrO2 is 108 Hz vs. 35 Hz of IrO2, and t80 of Au/IrO2 is 90 sec vs. 144 sec of IrO2. Similar effect were also found for sputtered Pt.

    We also use the two-step sorption model to analyze adsorption isotherm curves of various VOCs on IrO2. The number of specific adsorption site Am and the specific adsorption constant KLangmuir of the Langmuir model, as well as the non-specific sorption constant KHenry of the Henry model are calculated.

    中文摘要 I 英文摘要 III 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 奈米科技之簡介 1 1.2 感測器之原理與簡介 2 1.3 研究動機 5 第二章 文獻回顧 8 2.1 IrO2晶體之結構 8 2.2 IrO2晶體導電性 10 2.3 IrO2晶體成長 11 2.4 IrO2之場發射(Field Emission)特性 13 2.5 IrO2對氣體感測之應用 14 2.6 石英晶體微量天平(Quartz Crystal Microbalance) 15 2.6.1石英震盪器之壓電性(Piezoelectricity) 15 2.6.2 QCM偵測之理論模式建立 16 2.7 金屬對金屬氧化物性質的影響 18 第三章 實驗方法及步驟 20 3.1實驗藥品 20 3.2 儀器設備 21 3.3 二氧化銥有機金屬化學氣相沉積系統 22 3.4 實驗流程 23 3.5 石英震盪晶體處理 24 3.6 以MOCVD法製備IrO2薄膜步驟 25 3.7 濺鍍金屬 27 3.8 結構分析與性質量測儀器 28 3.9 QCM(Quartz Crystal Membrane)裝置 29 3.10 參數定義 31 第四章 結果與討論 33 4.1 IrO2表面型態分析 33 4.1.1 前趨物溫度影響 33 4.1.2 基板溫度影響 40 4.2 IrO2奈米桿薄膜之氣體感測 44 4.2.1 QCM(Au)空白實驗 44 4.2.2 IrO2QCM感測氣體之標準圖 47 4.2.3 IrO2氣體感測結果 48 4.2.4 IrO2吸附之應答時間 53 4.2.5 IrO2對酸類氣體之感測 54 4.2.6 IrO2對酸類氣體吸附模式之探討 56 4.3 Au對IrO2氣體感測性質之影響 61 4.3.1 Au/IrO2 vs. IrO2:對幾種不同氣體之感測 61 4.3.2 濺鍍Au量之影響 67 4.3.2.1 濺鍍Au量的控制 67 4.3.2.2 Au量對丙酸感測的影響 70 4.3.2.3 Au量對間-二甲苯感測的影響 72 4.3.2.4 Au量對辛烷感測的影響 74 4.3.3 Au在不同型態IrO2上之影響 79 4.3.3.1 基板溫度之影響 79 4.3.3.2 前驅物溫度之影響 81 4.3.4 Au/IrO2氣體吸附模式之探討 83 4.4 Au/IrO2對芳香族氣體感測 87 4.4.1 再現性 87 4.4.2 不同碳數取代基影響 88 4.5 Au/IrO2對烷類氣體感測 91 4.5.1 再現性 91 4.5.2 不同碳數取代基影響 92 4.5.3 烷類吸附行為討論 93 4.5.4濃度極限 95 4.6 Pt對IrO2氣體感測性質影響 96 4.6.1 Pt/IrO2 vs. IrO2:對幾種不同氣體之感測 96 4.6.2 白金(Pt)量對辛烷類感測的影響 98 4.6.3 再現性 100 4.6.4 濃度極限 101 第五章 結 論 102 第六章 參考文獻 104

    1. T.W.Ebbesen, “Wetting, filling and decorating carbon nanotube”, J.phys.Chem. Solid, 57, 951(1996)

    2. J. Sloan, J, Cook, J,R. Heesom, M. L. H. Green, J.L. Hutchison, “The encapsulation and in situ rearrangement of polycrystalline SnO inside xarbon nanotube”, J. Cryst. Growth, 173, 81(1997)

    3. J. J. Wu and S.C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, submit to J. Phys. Chem. B,106,9546(2002)

    4. J. J. Wu, S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”,Adv.Master., 14, 215(2002)

    5. P. Yang,C. M. Lieber, “Nanorod-superconductor composites:A pathyway to materials with high cirtical current densities”, Science ,273,1836(1996)
    6. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones,N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., 9, 3173(1999)

    7. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., 303, 311(1999)

    8. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee,D.J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J.M. Kim, “Catalytic growth of β-Ga2O3 nanowires by Arc discharge”, Adv. Mater., 12, 746(2000)

    9. M. Blouin and D. Guay, “Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1-x Oxide Electrodes During Cathodic Polarization and Hydrogen Evolution”, J. Electrochem. Soc., 44, 573(1997)

    10. A. Cornell, and D. Simonsson, “Ruthenium Dioxide as Cathode Material for Hydrogen Evolution in Hydroxide and Chlorate Solutions”,J. Electrochem. Soc., 140, 3123(1993)

    11. K. Kalyanasundaram, E. Borgarello and M. Gratzel, “Visible Light Induced Water Cleavage in CdS Dispersions Loaded with Pt and RuO2 Hole Scavenging by RuO2 “,Helvetica Chimica Acta, 64, 362 (1981)

    12. P. K. Khanna, S. K. Bhatnagar, and M. L. Sisodia, “Inter-diffusion Phenomena and Electrical Conduction in Thick-film Segmented –resistor Structure”, J. Phys. D: Appl. Phys., 21, 1796 (1998)

    13. M. Prudenziati, B. Morten, F. Cilion, Fcilloni and G.ruffi, “Very High Strain Sensitivity in Thick-film Resistor: Real and False Super Gauge Factor”, Sensors and Actuators, 19, 401 (1989)

    14. S. Ferro and A. de Battisti, “Electrochemistry of the apueous europium(III)/europium(II) redox couple at conductive diamound electrodes”J. Electroanalytical Chemistry, 533,177 (2002)

    15. A. T. Kuhn,C.J. Mortimer, “Kinetic of Chlorine Evolution and Reduction on Titanium-Supported Metal Oxides Especially RuO2 and IrO2”,J. Electrochem. Soc., 120,231 (1973)

    16. S. L. Kuo and N. L. Wu, “Composite Supercapacitor Contaning Tin Oxide and Electroplated Ruthenium Oxide”, Electrochemical and Solid-state Lett., 6, A85 (2003)

    17. J. Y. Jo, J. G. Yoon, J. K. Lee, J. M. Koo, J. Y. Won, S. P. Kim, and T. W. Noh, Integr. Ferroelectr., 67 (2004) 143.

    18. M. F. Smiechowski, V. F. Lvovich, Sensors and Actuators B, 96 (2003) 261.

    19. S. A. M. Marzouk, Anal. Chem., 75 (2003) 1258.

    20. A. N. Bezbraruah and T. C. Zhang, Anal. Chem., 74 (2002) 5726.

    21. H. Beyenal, C. C. Davis, Z. Lewandowski, Sensors and Actuators , 97 (2004) 202.
    22. 陶德和,科儀新知,第十五卷,第二期,1993

    23. Nateale, C. D., A. Macagnano, G.Repole, G. Saggio, A. D. Amico, R. Paolesse and T. Boschi, Materials Science and Engineering, C5,
    209-215(1998)

    24. 施正雄, 科學發展月刊, 27, 1184-1197 (1999)

    25. Ju, Y. H.; C. J. Liu and J. C. Hsieh, J. Chin. Inst. Chem. Engrs., 29, 6, 415 (1998)

    26. Liu, C. J., S.Y. Wang, J. C. Hsieh and Y. H. Ju, Sensors and Actuators, B65, 371 (2000)

    27. Liu, C. J., C.H. Peng, Y. H. Ju and J.C. Hsieh, Sensors & Actuators, B52, 3, 264 (1998)

    28. Liu, C. J., W. C. Hou and Y. H. Ju, J. Chin. Inst. Chem. Engrs., 31, 237 (2000)

    29. Liu, C. J., J. C. Hsieh and Y. H. Ju, J. Vac. Sci. Technol. A14, 753 (1996)

    30. Ju, Y. H., J. C. Hsieh and C. J. Liu, Thin Solid Films, 342, 238 (1999)

    31. Hsieh, J. C., C. J. Liu and Y. H. Ju, Thin Solid Films, 322, 98 (1997)

    32. Guilbault, G. G. and J. M. Jordan, “Analytical uses of piezoelectric crystals︰A review”. CRC Critical Review in Analytical Chemistry, 19, 1-28 (1988)

    33. Grate, J. W., S. J. Martin and R. M. White, Anal. Chem.,65, 940A-948A, (1993)
    34. 蔡嬪嬪、曾明漢, 材料與社會, 68(50), (1992)

    35. Natale, C. D., D. Salimbeni, R. Paolesse, A. Macagnano and A. D,Amico, Sensors and Actuators, B65, 220-226 (2000)

    36. Sauerbrey, G., Z. Phys., 155, (1959), 206

    37. 謝志松, “氧化釕化學氣相沉積及場發射性質”,國立台灣科技大學化學工程系碩士論文(2004)

    38. 梁雅閔, “化學氣相沉積氧化銥奈米桿氧化銥薄膜之製備與結構分析”國立台灣科技大學化學工程系碩士論文(2003)

    39. A. Bolzan, C. Fong, B. J.Kennedy, C. J. Howard, “Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B53, 373 (1997)

    40. L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B13, 2433 (1976)

    41. W. D. Ryden and A. W. Lawson, “electronic transport properties of IrO2 and RuO2” , Phys. Rev. B1, 1813 (1984)

    42. Mattheiss, L. F., “Electronic Structure of RuO2 , OsO2, and IrO2,” Phys. Rev. B, Vol. 13, No. 6, 2433-2450 (1976)

    43. Hackwood, S., L. M. Schiavone, W. C. Dautremont-Smith and G. Beui, “Anodic Evolution of Oxygen on Sputtered Iridium Oxide Films, ”J. Electrochem, Soc.,128, No. 12, 2569-2573 (1981)

    44. Weudt, M., and H. M. Kuhne, “Sputtering of Iridium Oxide Films as Protective Layer for Oxygen Evolving Photoamodes,” Conference Record of Twentieth IEEE photovoltaic Specialists, 2, 1656-1661 (1988)
    45. Swette, I., N. Kackley and S. A. McCatty, “Oxygen electrodes for Rechargeable Alkline Fuel Cell,” J. of Power Source, 36, 323-329 (1991)

    46. Hamnett, A., P. S. Newcastle and R. D. Wingate, “Nafion-bonded Porous Titanium Oxide Electrodes for Oxygen Evolution towards a Regeneatrive Fuel Cell,” J. of Appl. Electrochemistry, 24, 982-985 (1991)

    47. Oxley, J. E., “High-rate Solid-state Electrochemical Capacitor,” Proceedings of the 34th Internationol Power Sources Symposium,. 346-350 (1990)

    48. M. Lambrechts and W. Sansen, “Thick-film Voltammetric Sensors Based On Ruthenium Dioxide,” Sensors and Actuators, 13, 287-292 (1988)

    49. W. OlThuis, J. C. Van KerKhof and P. Bergveld, “Preparation of Iridium Oxide and its Application in Sensor-Actuator Systems,” Sensors and Actuators, B4, 151-156 (1991)

    50. J. A. Mihell, J. K. Atkinson, “Planar Thick-film pH Electrodes based on Ruthenium Dioxide Hydrate,” Sensors and Actuators, B48, 505-511 (1998)

    51. Robert M. Ianniello and Alex Ander M. Yacynych, “Urea Sensor Based On Iridium Dioxide Electrodes With Immobilized Urease,” Analytical Chimica Acta. ,146, 249-253 (1983)

    52. Matthew F. Smiechowski, Vadim F. Lvovich, “Iridium Oxide Sensors for Acidity and Basicity Detection in Industrial Lubricants,” Sensors and Actuators, B96, 261-267 (2003)

    53. Dario Narducci, Alberto Ornaghi and Claudio M. Mari, “CO Determination in Air by YSZ-based Sensors,” Sensors and Actuators B, 18-19, 566-568 (1994)

    54. A.Karthigeyan, R. P. Gupta, K. Scharnagl, “A Room Temperature HSGFET Ammonia Sensor Based on Iridium Oxide Thin Film,” Sensors and Actuators, B85, 145-153 (2002)

    55. Toro Ishiji, David W. Chipman, Taro Takahashi , Katuso Takahashi, Katsuo Takahashi, “Amperometric Sensor for Monitoring of Dissolved Carbon Dioxide In Seawater,” Sensors and Actuators, B76, 265-269 (2001)

    56. Anette Salomonsson, Somenath Roy, Christian Aulin, “Nanoparticles for Long-term Stable, More Selective MISiCFET Gas Sensors,” Sensors and Actuators, B107, 831-838 (2005)

    57. Reui-San Chen, Ying-Sheng Huang, Ya-Min Liang, Dah-Shyang Tsai, Yun Chi and Ji-Jung Kai, “Growth Control and Characterization of Vertically Aligned IrO2 Nanorods,” Journal of Materials chemistry, 13, 2525-2529 (2003)

    58. Reui-San Chen,Ying-Sheng Huang, Dah-Shyang Tsai, Surajit Chattopadhyay, Chien-Ting Wu, Zon-Huang Lan and Kuei-Hsien Chen, “Growth of Well Aligned IrO2 Nanotubes on LiTaO3(012) Substrate”, Chem. Mater. 2004, 16, 2457-2462 (2004)

    59. Ruei-San Chen and Ying-Sheng Huang, Ya-Min Liang, Chim-Sung Hsieh and Dah-Shyang Tsai, Kwong-Kau Tiong, “Field Emission From Vertically Aligned Conductive IrO2 Nanorods,” Applied Physics Letters, 84, 1552-1554 (2004)

    60. J.T. Sommerfeld and G. Parravano, “Oxygen Chemisorption on Ruthenium Dioxide”, J.Chem. Phy., 102-115 (1964)

    61. Peter Deman , Jan Suls, Willy Sansen, “Continuous differential monitoring of the spent dialysate glucose level: clinical evaluation.”, Sensors and Actuators, B44, 304-308 (1997)

    62. Curie, P., J. Curie, C. R. Acad. Sci., 91, 294 (1880)

    63. Ward, M. D., D. A. Buttry, Science, 249, 1000 (1990)
    64. 趙雲秋, 國立台灣師範大學化學系, 碩士論文, (1995)

    65. Lu, C., A. W. Czanderna, Applications of Piezoelectric Quartz Crystal Microbalances, Elsevier Science, New York, (1984)

    66. Ewa Brocøawik a,*, Jerzy Haber a, Witold Piskorz b, “Molecular mechanism of C-H bond cleavage at transition metal oxide clusters” Chemical Physics Letters 333 (2001) 332-336

    67. R.S. Niranjan, I.S. Mulla*, “Spin coaten tin oxide: a highly sensitive hydrocarbon sensor” Material and Engineering B103 (2003) 103-107

    68. K. Bodenhofer, A. Hierlemann, M. Juza, V. Schuring, W. Gopel, Analytical Chemistry, (1997), 69, 4017.

    69. C. Fietzek, K. Bodenhofer, P. Haisch, M. Hees, M. Hanack, S. Steinbrecher, F. Zhou, E. Plies, W. Gopel, Sensors and Actuators B, (1999), 57, 88.

    70. R. Paolesse, C. D. Natale, V. C. Dall’Orto, A. Macagnano, A. Angelaccio, N. Motta, A. Sgarlata, J. Hurst, I. Rezzano, M. Mascini, A. D’Amico, Thin Solid Films, (1999), 354, 245.

    71. Chin-Hsin J. Liu, Sheng-Chiu Hsu, “Effect of Methylation on the Gas Sensing Properties of β-Cyclodextrins”, J.Chin. Inst. Chem. Engrs. V.34, N.6, P675-681, (2003)

    72. Zhi-Pan Liu, Stephen J. Jenkins, and David A. King Physical Review Letters V93, N15 (2004).

    73. T.W. Chao, C.J. Liu, A.H. Hsieh, H.M. Chang, Y.S. Huang, D.S. Tsai, “Quartz crystal microbalance sensor based nanostructured IrO2” Sensors and Actuators B (2006 in press)

    74. Tzong-Rong Ling, Chih-Min Tsai, “Influence of nano-scale dopants of Pt, CaO and SiO2, on the alcohol sensing of SnO2 thin films” Sensors and Actuators B (2006 in press)
    75. S. Shukla, L. Ludwig C. Parrish, S. Seal, “Inverse-catalyst-effect observed for nanocrystalline-doped tin oxide sensor at lower operating temperatures” Sensors and Actuators B 104, (2005) 223-231

    76. V. Svorcik, J. Zehentner, V. Rybka, P. Slepicka, V. Hnatowicz, “Characterization of thin gold layers on polyethyleneterephthalate:transition from discontinuous to continuous, homogenous layer” Applied Physics A 75,(2002) 541-544

    QR CODE