簡易檢索 / 詳目顯示

研究生: 高偉嘉
Wei-Chia Kao
論文名稱: 以直接轉印技術製作線性光學尺
Fabrication of Linear Optical Scales by Direct Imprint
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 楊申語
Sen-Yeu Yang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 139
中文關鍵詞: 奈米轉印技術滾壓轉印技術線性光學尺滾筒模具
外文關鍵詞: nanoimprint, rolling imprint, linear optical scale, roller mold
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於目前市售光學尺之製作方法是以曝光顯影或雷射直寫進行生產,但考慮到高精度曝光顯影光罩及裝置價格昂貴,且不適合製作長行程及反射式光學尺,而雷射直寫刻劃光柵結構的速度較慢,無法快速生產等因素,本研究將以微奈米轉印技術製作具金屬光柵之光學尺。微奈米轉印技術具有高解析度、快速生產以及低成本的特點,可克服曝光顯影及雷射直寫所面臨之成本及生產等問題。
    本研究將分兩階段進行,第一階段將以平面轉印直接轉印微結構於金屬薄膜之實驗,並探討轉印溫度、轉印壓力及轉印時間等操作參數對轉印結果之影響。第二階段則以滾壓轉印驗證長行程線性光學尺之製作可行性,本研究以現有之機台為架構,新增可拆卸式滾壓轉印裝置,並由萬向接頭調整滾輪之接觸均勻性及對位性。此外利用雷射直寫刻劃滾輪模具達到連續式無接縫微結構之製作,最後則是藉由滾壓轉印裝置將微結構轉印至鍍金柔性鋼帶,以獲得大尺寸之金屬光柵光學尺,並量測轉印結果進行分析討論。
    本研究採用平面轉印及滾壓轉印技術分別製作出週期 20μm及40μm之線性光學尺,製作之週期誤差在±1μm,並由實驗結果得出轉動速度對轉寫率的影響不顯著,因此可以得到光學尺快速生產之目的。雖然平面模具配合滾壓技術所做出之結構轉寫率只有60%,不過對於光學尺來說,量測精準度是由週期決定,光柵深度決定繞射效率,因此週期的精準度是相當重要因素,而配合市售光學讀頭進行訊號量測,也有得到不錯的輸出效果,


    Nowadays there are two ways, laser writing and photolithography, for manufacturing the main scale of linear optical encoder. Photolithography requires expensive mask and cannot fabricate ultra-long scale. The speed of laser direct writing is too slow for mass production. Nanoimprint offers a high-throughput, high-resolution and low cost process. It may overcome the problem of laser direct writing and photolithography in fabricating optical linear scale.
    The content of this study is divided into two sections. The first section uses flat optical grating molds to validate the feasibility of direct imprint on metal substrates and discusses the effect of operation parameters on the imprinting results. Because the flat imprint cannot fabricate a very large product, the existing imprint machine was added a removable roller imprint set to perform rolling imprint process in the second section. Contact uniformity and alignment can be adjusted by the universal joint of the equipment. In addition, the fabrication of a seamless roller mold by laser direct writing are presented. Rolling imprint process was performed to imprint microstructures into electroplated Au/Cu thin film on flexible steel strips. Fabrication of long optical scale with metallic gratings has been achieved successfully.
    Finally, this study fabricated the optical linear scale of 20μm pitch and 40μm pitch by flat and rolling imprint and error of the period is under ±1μm. Based on the results of the experiment, imprinting pressure has more influence on transfer rate than rolling speed so that we can achieve the high-throughput production. Although the mold structure only has 60% maximum transfer rate, depth of grating affect diffraction efficiency for linear scale. Measurement accuracy is an quite important problem; therefore, the error of pitch is core issue. Collocation with commercial readhead output a excellent signal.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xvii 第一章 、緒論 1 1-1前言 1 1-2研究背景 2 1-2-1 光學尺介紹與量測原理 2 1-2-2 莫爾條紋(Moiré patterns) 5 1-2-3 泰伯效應(Talbot effect) 7 1-2-4 電鍍 8 1-2-5 雷射原理與特性 9 1-3研究動機與目的 11 1-4論文架構 12 第二章 、文獻回顧 13 2-1奈米轉印技術 13 2-2滾輪模具製作 21 2-3光學尺之製造 26 第三章 、平面與滾壓轉印製程設計 30 3-1平面金屬轉印 30 3-2滾壓轉印裝置系統配置 31 3-3滾壓轉印裝置之規格 35 3-3-1 軸承座之徑向負載 35 3-3-2伺服馬達傳動系統 35 3-4滾壓轉印裝置控制系統及介面 36 3-4-1控制系統 36 3-4-2控制介面 37 3-4-3滾壓轉印成型模式 40 3-5滾壓轉印裝置操作調整 41 3-5-1滾輪軸向線校正 42 3-5-2滾輪徑向中心線校正 43 第四章 、實驗規劃 45 4-1實驗流程規劃 45 4-2微米結構模仁製程 50 4-2-1平面模仁之製備 50 4-2-2滾輪模仁之製備 53 4-3基底材料選擇 56 4-4反射層製備 59 4-4-1 電鍍金 60 4-5滾輪轉印壓力分析 62 4-5-1富士感壓軟片 63 4-5-2赫茲接觸壓力(Hertz contact pressure)理論值計算 64 4-5-3 Ansys接觸行為分析 67 4-5-4 實際滾壓接觸壓力量測 69 4-6 實驗設備 70 4-6-1光纖雷射機台(Fiber Laser Machine) 70 4-6-2掃描式電子顯微鏡(SEM) 72 4-6-3雷射共軛焦顯微鏡(Confocal) 73 4-6-4光學顯微鏡(OM) 75 第五章 、實驗結果與討論 76 5-1平面金屬轉印微結構 76 5-1-1平面金屬轉印實驗結果 76 5-1-2平面金屬轉印實驗結論 80 5-2滾輪轉印裝置驗證 81 5-2-1滾輪徑向線校正 81 5-2-2滾輪軸向中心線校正 82 5-2-3滾輪轉印壓力分析 83 5-2-4滾壓轉印裝置實驗結論 85 5-3雷射加工滾輪模具 86 5-3-1雷射加工平面模具 86 5-3-2雷射加工滾輪模具 89 5-3-3雷射加工結論 92 5-4鍍金鋼帶製程 93 5-4-1薄膜性質 93 5-4-2薄膜厚度 95 5-4-3電鍍製程結論 97 5-5以滾壓轉印製程製作線性光學尺之實驗結果 98 5-5-1以平面模具配合滾壓進行轉印之實驗結果 98 5-5-2以滾輪模具進行轉印之實驗結果 104 5-5-3以滾壓轉印製程製作線性光學尺之實驗結論 109 第六章 、結論 111 6-1 結論 111 6-2 未來發展方向 112 參考文獻 114

    [1]. E. Gabrielyan, ”The Basics of Line Moiré Patterns and Optical Speedup”, 2007,
    [2]. 陳耀瑋,“利用泰伯效應之繞射光柵式光學尺之研究”, 明道大學, 2010.
    [3]. http://m.wangchao.net.cn/baike/tcdetail_2597984.html
    [4]. M. Tang, H. Xie, J. Zhu, X. Li and Y. Li, ”Study of Moiré Grating Fabrication on Metal Samples Using Nanoimprint Lithography”, Optics Express, Vol. 20, Issue 3, pp.2942-2955, 2012
    [5]. S. Chou, P. Krauss and P. Renstrom, “ Nanoimprint Lithography”, Journal of Vacuum Science and Technology B, Vol. 14, pp.4129 –4133, 1996.
    [6]. H. Ten, A. Gibertson, and S. Y. Chou, “Roller Nanoimprint Lithography”, Journal of Vacuum Science and Technology B, Vol. 16, pp. 3926-3928, 1998.
    [7]. J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro and H. Hiroshima, ” Diamond Nanoimprint Lithography”, Nanotechnology, Vol. 13, No.5, pp 592-596, 2002
    [8]. Y. Hirai, T. Ushiro, T. Kanakugi and T. Matsuura, “ Fine Gold Grating Fabrication on Glass Plate by Imprint Lithography”, Nanofabrication Technologies, Vol. 5220, pp. 74-81, 2003
    [9]. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park and P. W. Yoon, “ Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching”, Microelectronic Engineering, Vol. 78-79, No.1-4, pp.314-318, 2005.
    [10]. H. L. Chen, S.Y. Chuang, H. C. Cheng, C. H. Lin, T. C. Chu, “Directly Patterning Metal Films by Nanoimprint Lithography with Low Temperature and Low Pressure”, Microelectronic Engineering, Vol. 83, No. 4-9, pp. 893–896, 2006
    [11]. B. Lu and W. J. Meng, ” Roll Molding of Microchannel Arrays on Al and Cu Sheet Metals: A Method for High-Throughput Manufacturing”, Journal of Micro and Nano-Manufacturing, Vol.2, pp.011007, 2013
    [12]. K. Ansari, J. A. van Kan, A. A. Bettiol, and F. Watt, “Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating”, Journal of Micromechanics and Microengineering, Vol. 16, pp.1967-1974, 2006.
    [13]. E. S. Hwang, J. W. Park, J. G. Kim, Y. Cho, K. M. Yeo, J. W. Seo, H. Kim, and S. Lee, “Micro Pattern Roll Mold for Large Area Display by Electroforming and Wrapping Method”, Journal of Applied Physics, Vol. 48, pp.050211, 2009.
    [14]. L. T. Jiang, T. C. Huang, C. Y. Chang, J. R. Ciou, S. Y. Yang, and P. H. Huang, ” Direct Fabrication of Microstructures on Metal Roller using Stepped Rotating Lithography and Electroless Nickel Plating”, Microelectronic Engineering, Vol.86, pp.615-618, 2009.
    [15]. W. Wang, X. Mei, and G. Jiang, “Control of Microstructure Shape and Morphology in Femtosecond Laser Ablation of Imprint Rollers,” International Journal of Advanced Manufacturing Technology, Vol. 41, no. 5-6, pp. 504–512, 2009.
    [16]. S. J. Fan, Y. S. Shi, L. Yin, L. Feng, and H. Z. Liu, “A Study on The Fabrication of Main Scale of Linear Encoder Using Continuous Roller Imprint Method”, Proceedings of SPIE, Sixth International Symposium on Precision Mechanical Measurements, Vol. 8916, 2013
    [17]. 李岳峰, “複合功能轉印設備及製程開發”, 國立台灣科技大學碩士論文, 2011.
    [18]. T. Mäkelä , T. Haatainen, J. Ahopelto, “ Roll-to-Roll Printed Gratings in Cellulose Acetate Web using Novel Nanoimprinting Device”. Microelectronic Engineering, Vol. 88, pp.2045-2047, 2011.
    [19]. Y. C. Lee, P. C. Chen and H. Y. Lin, ” Fabrication of Seamless Roller Mold with Excimer Laser Direct Writing Technology”, IEEE, Nano/Micro Engineered And Molecular System, pp. 767-770, 2009.
    [20]. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Talbot Effect with Rough Reflection Gratings”, Applied Optics, Vol 46, No. 18, pp. 3668- 3673, 2007
    [21]. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot Effect in Metallic Gratings under Gaussian Illumination”, Optics Communications, Vol. 278, Issue 1, pp.23-27, 2007
    [22]. 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, pp.144-145, 2002.
    [23]. 謝雲亮, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文,2005.
    [24]. 白蓉生, ”化學鎳與浸鍍金之考量”。
    [25]. A. L. Vig, T. Mäkelä, P. Majander, V. Lambertini, J. Ahopelto and A. Kristensen, ” Roll-to-Roll Fabricated Lab-on-a-Chip Devices”, Journal Of Micromechanics And Microengineering, Vol. 21, 035006, 2011.
    [26]. S. H. Ahn and L. J. Guo, ” Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step Toward High-Throughput Application of Continuous Nanoimprinting”, ACS Nano, Vol 3, pp.2304–2310, 2009.
    [27]. S. H. Lan, J. H. Song, M. G. Lee, J. Ni, N. K. Lee and H. J. Lee, “ Continuous Roll to Flat Thermal Imprinting Process for Large area Micro Pattern Replication on Polymer Substrate”. Microelectronic Engineering, Vol. 87, pp.2596-2601, 2010
    [28]. K. L. Johnson, “Contact Mechanics,” Cambridge University Press, Cambridge, 1985.
    [29]. 陳正宗, “膽管支架支設計與光纖雷射加工” , 碩士論文, 國立臺灣科技大學, 2013。
    [30]. 百度文庫, ”電鍍基礎知識”。
    [31]. E. Kimmari L. Kommel, ”Application of the continuous indentation test method for the characterization of mechanical properties of B4C/Al composites”, Proceedings of the Estonian Academy of Sciences, Engineering, Vol. 12, No. 4, pp. 399-407, 2006.
    [32]. T. Chaise and D. Nelias, ” Contact pressure and residual strain in 3d elasto-plastic rolling contact for a circular or elliptical point contact”, ASME Journal of Tribology, Vol. 133, Issue 4, pp. 041402.1–041402.9, 2011.
    [33]. T. Mäkelä , T. Haatainen and J. Ahopelto, ” Pilot Production of Photonic Devices by Roll to Roll Nanoimprint”, Journal Of Photopolymer Science And Technology, Vol. 25, pp. 227-228, 2012.
    [34]. T. R. Andersen, H. F. Dam, M. Hosel, M.Helgesen, J. E. Carl´e, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaıtre, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Valimaki, M. Vilkman, R. R. Sndergaard, M. Jrgensen, C. J. Brabec and F. C. Krebs, ” Scalable, Ambient Atmosphere Roll-to-Roll Manufacture of Encapsulated Large Area, Flexible Organic Tandem Solar Cell Modules”, Energy & Environmental Science, Vol. 7, pp. 2925–2933, 2014.
    [35]. 陳品璋, “準分子雷射直寫技術應用於具微米特徵之無接縫滾筒模仁”, 國立成功大學碩士論文, 2008.
    [36]. N. Kooy, K. Mohamed, L. T. Pin, O. S. Guan, ” A Review of Roll-to-Roll Nanoimprint Lithography”, Nanoscale Research Letters, Vol. 9, pp. 320-1–320-13, 2014.
    [37]. J. J. Dumond and H. Y. Low, ” Recent Developments and Design Challenges in Continuous Roller Micro- and Nanoimprinting”, Journal of Vacuum Science & Technology B, Vol. 30, pp.010801, 2012.
    [38]. 洪正輝, “金屬次微米結構之熱壓成型研究”, 國立中正大學碩士論文, 2006.

    無法下載圖示 全文公開日期 2020/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE