簡易檢索 / 詳目顯示

研究生: 吳建欣
Chien-hsin Wu
論文名稱: 已知環境內具有路徑規劃功能之視覺搜尋撿球機器人
A Visual Search with Pick-up Balls Robot through Path Planning in Known Environments
指導教授: 范欽雄
Chin-shyurng Fahn
口試委員: 黃榮堂
Jung-tang Huang
邱士軒
Shih-hsuan Chiu
林其禹
Chyi-yeu Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 67
中文關鍵詞: 樣板比對視覺伺服控制路徑規劃撿球
外文關鍵詞: Template matching, visual servo control, path planning, pick up balls
相關次數: 點閱:230下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之目的在於完成一部裝設有webcam的視覺搜尋機器人系統,它係利用視覺伺服控制的方式來完成搜尋進而撿起目標物的動作,並且具有路徑規劃功能,能有效率的在已知環境內完成撿起目標物的工作。
在偵測目標物方面,最重要的問題是:如何從擷取的影像中找出可能是目標物的物體,在本論文中以乒乓球為目標物,使用樣板比對法來偵測之,同時得知乒乓球的距離與位置,最後控制機器人撿起目標物;在路徑規劃方面,本論文在全域覆蓋路徑規劃上作修改,以適用於我們的機器人,使之能在真實的桌球場地內更有效率地工作。此外,針對撿球動作,我們設計了獨特的機構,在耗電量不高的狀況下,可以輕易的撿起乒乓球。
實驗結果得知,本系統可以有效地撿起地上的乒乓球,並且閃躲乒乓球桌與牆壁,透過特殊的路徑規劃設計與獨有的撿球機構,讓運動員在練習過後不必辛苦的彎腰撿球,在訓練上能更輕鬆與專注。


The purpose of this paper is to achieve a visual search robot system which has webcam on it. The robot searched and picked up the targets by visual servo control. It also owns the capability of the path planning, and completed the pick-up job in known environment effectively.
In terms of detecting the targets, the most important problem is how to find out the targets in the image of the grabbed stream video. In this paper, we take the table-tennis ball for the target. The robot detected the table-tennis balls by template matching, and got the distance and the location of the balls. Finally, we control the robot to pick up the balls. In terms of path planning, we improve the completed coverage path planning to suit our robot system in this paper. By this, the robot can work more effectively in table-tennis training room. On the other hand, we design a special mechanism, and it can pick up the table-tennis balls easily without large energy.
After experiments, our system can quickly pick up the table-tennis balls on the ground, and also can dodge the table-tennis tables and the walls. Through the improved path planning and the special mechanism, the athletes will not pick up the balls hardly after training. Therefore, they can train easily and absorbedly.

Chapter 1 Introduction 1 1.1 Overview 1 1.2 Background and motivation 2 1.3 Related work 3 1.4 Thesis organization 5 Chapter 2 System discription 6 2.1 Hardware system 7 2.2 The mechanism of pick-up balls and camera platforms 10 2.3 System capability 12 2.4 The command of robot contorlling 13 Chapter 3 Target detection 14 3.1 Image preprocessing 15 3.1.1 Edge detection 15 3.1.2 Morphological operation 16 3.1.3 Color space transformation 19 3.2 Table-tennis balls detection 21 3.2.1 Template matching 21 3.2.2 Direction and distance 23 Chapter 4 Path planning 26 4.1 Introduction to table-tennis training room 26 4.2 Cell decomposition 27 4.3 Path planning for target detection in each cell 29 4.4 Path planning for the whole area 32 4.5 Efficiency of the path planning 34 Chapter 5 Experimental Results and Discussions 36 5.1 The result of target detection 38 5.2 The result of pick-up balls 41 5.3 The result of path planning 42 5.4 The result of the robot system working in the whole area 45 5.4.1 Picking up balls around the room 45 5.4.2 Picking up balls in the cells of the center area 47 5.4.3 Change the cells 49 Chapter 6 Conclusions and feature works 51 6.1 Conclusions 51 6.2 Feature works 52 References 54

[1] Y. Liu, X. Lin, and S. Zhu, “Combined coverage path planning for autonomous cleaning robots in unstructured environments,” in Proc. of IEEE Intelligent Control and Automation, 7th World Congres, 2008, pp.8271- 8276.
[2] T. Oksanen, A. Visala, “Coverage path planning algorithms for agricultural field machines,” in Journal of Field Robotics, 2009, Vol. 26, pp.651-688.
[3] Fen Xu, ZhengXi Li, and Kui Yuan, “The design and implementation of an autonomous campus patrol robot,” in Proc. of IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp.250-255.
[4] G. Yan, J. Bao, and A. Song “Designed and implementation of a semi-autonomous search robot,” in Proc. of Mechatronics and Automation, 2009, pp.4621-4626.
[5] M. H. Kim, S. C. Lee, and K. H. Lee, “Self-localization of Mobile Robot with Single Camera in Corridor Environment,” in Proceedings of the IEEE International Symposium on Industrial Electronics, Pusan, Korea, pp. 1619-1623, June, 2001.
[6] S. Park, K. Kim, S. K. Park, and M. Park, “Object Entity-based Global Localization in Indoor Environment with Stereo Camera,” in Proceedings of the SICE-ICASE International Joint Conference, Busan, Korea, pp.2681-2686, October, 2006.
[7] X. C. Lai, S. S. Ge, P. T. Ong, and A. A. Mamun, “Incremental Path Planning Using Partial Map Information for Mobile Robots,” in Proceedings of the IEEE International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 1-6, December, 2006.
[8] S. Surve, N. M. Singh, B. K. Lande, ”CPPA: A Fast Coverage Algorithm,” in Proceedings of the IEEE International Conference on Computational Intelligence and Multimedia Applications, pp. 151-158, December, 2007.
[9] S. Se, D. G. Lowe, and J. J. Little, “Vision-Based Global Localization and Mapping for Mobile Robots,” IEEE Transactions on Robotics, Vol. 2, No. 3, pp 364-375, 2005.
[10] 黃國興, 蕭文霖, 邱詰淙, 陳惠甫, “An Implementation of Pick-up Tennis Robot,” ILT2007第二屆智慧生活科技研討會,pp.1003-1008,國立勤益科技大學電資學院智慧生活科技研發中心,June 1, 2007.
[11] Y. Z. Ding, “The Intelligent Ping Pong Balls Collector,” Master Thesis, Department of Electrical Engineering, National Central University, Taoyuan, Taiwan, 2008.
[12] H. Choset, “Coverage of known spaces: the Boustrophedon cellular decomposition,” in Proc. of IEEE Autonomous Robots, Springer, Netherlands, 2000, vol. 9, no. 3, pp.247-253.
[13] S. C. Wong and B. A. MacDonald, “A topological coverage algorithm for mobile robots,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lag Vegas, USA, 2003, pp.1685-1690.
[14] S. C. Wong and B. A. MacDonald, “Complete coverage by mobile robots using slice decomposition based on natural landmarks,” in Proc. of the 8th Pacific Rim International Conference on Artificial Intelligence, Auckland, New Zealand, 2004, pp.683-692.
[15] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse Decompositions for Coverage Tasks,” The International Journal of Robotics Research, 2002, vol. 21, no. 4, pp.331-344.
[16] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, “Exact cellular decomposition in terms of critical points of Morse functions,” in Proc. of the IEEE International Conference on Robotics and Automation, San Francisco, USA, 2000, pp.2270-2277.
[17] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Ed., Addison-Wesley, Reading, Massachusetts, 1992.
[18] http://en.wikipedia.org/wiki/HSV_colour_space#Visualization_of_HSV
[19] J. W. Kang, S. J. Kim, M. J. Chung, H. Myung, J. H. Park, and S. W. Bang, “Path Planning for Complete and Efficient Coverage Operation of Mobile Robots,” in Proc. of the Mechatronics and Automation International Conference, Harbin Heilongjiang, China, 2007, pp.2126-2131.

QR CODE