簡易檢索 / 詳目顯示

研究生: 賴季暉
Chi-Hui Lai
論文名稱: 多模態合成傳輸線及其微型化電路和異質整合相位陣列天線之研究
Multi-Operational Mode Synthesized Transmission Lines and Their Applications to Miniatruized Circuits and Heterogeneous Integrated Phased Array
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
郭仁財
Jen-Tsai Kuo
毛紹綱
Shau-Gang Mao
林祐生
Yo-Shen Lin
張嘉展
Chia-Chan Chang
紀佩綾
Pei-Ling Chi
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 148
中文關鍵詞: 合成傳輸線多模態操作雙工器三工器巴特勒矩陣范艾達陣列相位共軛陣列異質整合陣列天線系統被動整合製程
外文關鍵詞: multi-operational mode, phase-conjugating array
相關次數: 點閱:256下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於實現合成傳輸線之多模態操作特性,在不引入主動元件的前提下,使合成傳輸線於數個特定操作頻帶產生迥異電氣響應行為。藉此特殊電氣行為,本論文實現多款微型化微波元件,並將其整合發展為三模態異質整合相位陣列天線系統。
    首先,本論文嘗試於合成傳輸線引入雙零點架構,使之具有慢波與諧波抑制之雙重特性,並據以實現威爾金森功率分歧器、直交分合波器以及鼠競耦合器之微型化設計。
    其次,設計雙模態右手及左手合成傳輸線各一款,並整合為微型化雙工器。 該雙模態合成傳輸線皆具有一通帶及一傳輸零點,且操作於傳輸零點之頻率時,其傳輸線之輸入阻抗須為無窮大。因其特殊雙模態響應,此雙工器不需額外匹配電路,故不但可簡化電路設計,亦可減少不必要的功率損耗。此雙工器乃實現於玻璃基板被動整合製程,相較於文獻最尖端之設計,本設計具有最小的電路面積。
    再者,本文設計多款三模態合成傳輸線,並整合為微型化三工器。該三模態合成傳輸線可設計為具有兩個通帶及一個可使輸入阻抗呈現無窮大或短路之傳輸零點,或是一個通帶及兩個傳輸零點,該零點亦須使傳輸線之輸入阻抗為無窮大。此外,通帶之傳輸線特徵阻抗及電氣長度亦為重要設計參數。若將此三工器與文獻記載之頂尖設計相較,則具有最小之電路面積,及最低的功率損耗。
    最終,本論文將前述三模態合成傳輸線進行整合,實現一款創新異質整合相位陣列天線系統。該相位陣列的核心元件為三頻選擇器,其架構與三工器相仿,但功能截然不同;此外,三模態耦合器跟雙工器亦為重要構成元素。該陣列系統於低頻帶可等效為巴特勒矩陣,以作為波束切換之用。於中、高頻帶時,則其陣列系統可自動將饋入網路組態改為范艾達陣列及相位共軛陣列,分別作為信號回溯天線之用。此創新設計為全新構思及發想,尚未記載於任何文獻。


    In this dissertation, novel multi-operational mode synthesized transmission lines, capable of providing distinct responses in multiple designated bands, are proposed and investigated. With the help of the multi-mode synthesized lines, a number of miniaturized microwave components and an innovative tri-mode heterogeneous integrated phased array are realized and verified without embedding active switches.
    First of all, by introducing dual transmission zeros, synthesized transmission lines with simultaneous slow-wave and harmonic suppression properties are proposed and utilized in the realization of miniaturized Wilkinson power divider, branch-line coupler, and rat-race coupler.
    Secondly, two dual-mode right-handed/left-handed synthesized lines are proposed and integrated as a miniaturized diplexer on glass integrated passive device (GIPD) process. Each dual-mode synthesized line creates a transmission channel, along with a transmission zero in the stopband; the input impedance of the synthesized line should be infinite at the transmission zero frequency. Profiting from the dual-mode operation, the diplexer requires no additional matching network, making it feature an extraordinarily compact size and low power dissipation. It shows the smallest circuit footprint among the state-of-the-art designs in open literature.
    A number of tri-mode synthesized transmission lines are then proposed to develop a new miniaturized triplexer, which also has the advantages of a very compact size and minimal power dissipation among the reported designs. The tri-mode transmission line can be designed to provide either two passbands with a transmission zero, or a single passband along with two transmission zeros. At the transmission zero frequency, the input impedance of the line must be open-circuited or short-circuited, as well. Rigorous synthesis formulae and design approaches are discussed and summarized, which include the equivalent characteristic impedances and electric lengths of the tri-mode lines in the passbands.
    Finally, with the help of the developed tri-mode synthesized lines, an innovative heterogeneous integrated phased array is implemented and experimentally verified. One of the core components is the three-channel selector, whose architecture is similar to the triplexer but with dramatically different functions. Other key components like the tri-mode coupler and diplexer are introduced, as well. The integrated phased array is equivalent to a conventional Butler matrix for beam-switching in the low band, but can automatically switch its topology into a Van Atta array and a phase-conjugating array, respectively, in the mid and high bands for retrodirection. This multi-functional integrated phased array is an original idea that has never been reported in open literature.

    摘要 i Abstract iii 誌謝 v Contents vii List of Figures x List of Tables xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Contributions 6 1.4 Chapter Outlines 8 Chapter 2 Miniaturized Couplers with Harmonic Suppression Using Synthesized Transmission Lines 10 2.1 Introduction 10 2.2 Design of the Unit Cell 11 2.3 Synthesis of the Quarter-Wavelength Lines 13 2.4 Miniaturized Couplers with Harmonic Suppression 19 2.4.1 Wilkinson Power Divider 19 2.4.2 Branch-Line Coupler 22 2.4.3 Rat-Race Coupler 25 2.5 Summary 29 Chapter 3 Miniaturized Diplexer on GIPD Process Using Dual-Mode Synthesized Transmission Lines 30 3.1 Introduction 30 3.2 Design Scheme of the Diplexer 31 3.3 Dual-Mode Right-Handed and Left-Handed Synthesized Transmission Lines 32 3.4 CPW Implementation on GIPD process 35 3.5 Realization of the On-Chip Miniaturized Diplexer 39 3.6 Summary 42 Chapter 4 Tri-Mode Synthesized Transmission Lines and its Application to a Miniaturized Triplexer 43 4.1 Introduction 43 4.2 Circuit Design Strategy 44 4.3 Tri-Mode Synthesized Transmission Lines 47 4.3.1 Synthesized Line A 48 4.3.2 Synthesized Line B 56 4.3.3 Synthesized Line C 62 4.3.4 Synthesized Line D 64 4.3.5 Synthesized Line E 72 4.3.6 Synthesized Line F/F’ 75 4.4 Design of the Miniaturized Triplexer 82 4.5 Summary 88 Chapter 5 Heterogeneous Integrated Beam-Switching/Van Atta/Phase-Conjugating Array Using Tri-Mode Synthesized Transmission Lines 89 5.1 Introduction 89 5.2 Operational Principle 91 5.3 Core Component Designs 95 5.3.1 Three-Channel Selector 96 5.3.2 Tri-Mode Coupler 101 5.3.3 Diplexer 105 5.4 Phase Compensation Scheme 109 5.5 System Integration and Experimental Validation 113 5.5.1 Beam-Switching Mode 118 5.5.2 Van Atta Mode 122 5.5.3 PCA Mode 127 5.6 Summary 131 Chapter 6 Conclusion 132 6.1 Summary 132 6.2 Future Works 133 References 135 Publication List 149 Appendix 152

    [1] S.-M. Wang, C.-H. Chi, M.-Y. Hsieh, and C.-Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 747–753, Feb. 2005.
    [2] S. Sun, J. Shi, L. Zhu, S.-C. Rustagi, K. Kang, and K. Mouthaan, “40 GHz compact TFMS meander-line bandpass filter on silicon substrate,” Electron. Lett., vol. 43, no. 25, pp. 1433–1434, Dec. 2007.
    [3] X. Jin, Z.-H. Zhang, L. Wang, and B.-R. Guan, “Compact dual-band bandpass filter using single meander multimode DGS resonator,” Electron. Lett., vol. 49, no. 17, pp. 1083–1084, Aug. 2013.
    [4] H. Ghali and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 11, pp. 2513–2520, Nov. 2004.
    [5] G. Karimi, F. Khamin-Hamedani, and H. Siahkamari, “Miniaturised microstrip lowpass filter with sharp roll-off and ultra-wide stopband,” Electron. Lett., vol. 49, no. 21, pp. 1343–1345, Oct. 2013.
    [6] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 476–479, Mar. 2001.
    [7] J.-A. Hou and Y.-H. Wang, “Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2932–2939, Nov. 2010.
    [8] F.-R. Yang, K.-P. Ma, Y. Qian and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
    [9] P. Meissner and M. Kitlinski, “A 3-dB multilayer coupler with UC-PBG structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 52–54, Feb. 2005.
    [10] C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 6, pp. 1637–1647, Jun. 2004.
    [11] H.-S. Wu, H.-J. Yang, C.-J. Peng, and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 9, pp. 2713–2720, Sep. 2005.
    [12] M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Artificial-synthesized edge-coupled transmission lines for compact CMOS directional coupler designs,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3410–3417, Dec. 2009.
    [13] Y. Chung, S.-S. Jeon, S. Kim, D. Ahn, J.-I. Choi, and T. Itoh, “Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1425–1432, May 2004.
    [14] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008.
    [15] S. Shi, W.-W. Choi, W. Che, K.-W. Tam, and Q. Xue, “Ultra-wideband differential bandpass filter with narrow notched band and improved common-mode suppression by DGS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 185–187, Apr. 2012.
    [16] W.-H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2497–2502, Jun. 2006.
    [17] C.-W. Tang and M.-G. Chen, “Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 666–668, Dec. 2006.
    [18] K.-K. M. Cheng and W.-C. Ip, “A novel power divider design with enhanced spurious suppression and simple structure,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3903–3908, Dec. 2010.
    [19] C.-H. Li, C.-L. Yeh, M.-H. Huang, and S.-M. Wu, “A harmonic suppression bandpass filter designed by E-type SIR with shunt open stub,” in Proc. 2011 Asia-Pacific Microw. Conf., Melbourne, Australia, pp. 1031–1034.
    [20] S.-S. Gao, S. Sun, and S. Xiao, “A novel wideband bandpass power divider with harmonic-suppressed ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 119–121, Mar. 2013.
    [21] Y.-H. Cho and S.-W. Yun, “Design of Balanced Dual-Band Bandpass Filters Using Asymmetrical Coupled Lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2814–2820, Aug. 2013.
    [22] J.-T. Kuo, Y.-C. Chiou, and J.-S. Wu, “Miniaturized rat race coupler with microstrip-to-CPW broadside-coupled structure and stepped-impedance sections,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, pp. 169–172, 2007.
    [23] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1213–1221, May 2010.
    [24] C.-H. Kim and K. Chang, “Wide-stopband bandpass filters using asymmetric stepped-impedance resonatorsr,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 69–71, Feb. 2013.
    [25] K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 10, pp. 2119–2125, Oct. 2003.
    [26] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
    [27] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.
    [28] C.-C. Wang, H.-C. Chiu, and T.-G. Ma, “A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1719–1728, Jul. 2011.
    [29] K.-C. Lin, C.-H. Wu, C.-H. Lai, and T.-G. Ma, “Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5118–5128, Nov. 2012.
    [30] J.-W. Tsai, C.-H. Wu, and T.-G. Ma, “Novel dual-mode retrodirective array using synthesized microstrip lines,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3375–3388, Dec. 2011.
    [31] J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128–3139, Aug. 2013.
    [32] C.-H Lai, C.-Y. Shiau, and T.-G. Ma “Novel tri-operational mode synthesized transmission line,” in Proc. 43th Eur. Microw. Conf., Nuremberg, Germany, pp. 581-584, 2013.
    [33] C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Microwave three-channel selector using tri-mode synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3529–3540, Oct. 2013.
    [34] K.-H. Yi and B. Kang, “Modified Wilkinson power divider for nth harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178–180, May 2003.
    [35] D.-J. Woo and T.-K. Lee, “Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 6, pp. 2139–2144, Jun. 2005.
    [36] C.-M. Lin, H.-H. Su, J.-C. Chiu, and Y.-H. Wang, “Wilkinson power divider using microstrip EBG cells for the suppression of harmonics,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 700–702, Oct. 2007.
    [37] F. Zhang and C.-F. Li, “Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic suppression,” Electron. Lett., vol. 44, no. 6, pp. 422–423, Mar. 2008.
    [38] J. Wang, J. Ni, Y.-X. Guo, and D. Fang, “Miniaturized microstrip Wilkinson power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 440–442, Jul. 2009.
    [39] J. Yang, C. Gu, and W. Wu, “Design of novel compact coupled microstrip power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 572–574, Sep. 2008.
    [40] J. Zhang, L. Li, J. Gu, and X. Sun, “Compact and harmonic suppression Wilkinson power divider with short circuit anti-coupled line,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 661–663, Sep. 2007.
    [41] P. Mondal and A. Chakrabarty, “Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,” IET Microw., Antennas, Propag., vol. 3, no. 1, pp. 109–116, Jan. 2009.
    [42] K. Srisathit, P. Jadpum, and W. Surakampontorn, “Miniature Wilkinson divider and hybrid coupler with harmonic Suppression using T-shaped transmission line,” in Proc. 2007 Asia-Pacific Microw. Conf., Bangkok, Thailand, pp. 1–4.
    [43] J. Wang, B.-Z. Wang, Y.-X. Guo, Y.-X. Guo, L. C. Ong, and S. Xiao, “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 501–503, Jul. 2007.
    [44] J. Wang, B.-Z. Wang, Y.-X. Guo, Y.-X. Guo, L. C. Ong, and S. Xiao, “A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 537–539, Oct. 2011.
    [45] C.-H. Lai and T.-G. Ma, “Novel synthesized microstrip line with quasi-elliptic response for harmonic suppressions,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, pp. 1540–1543, 2010.
    [46] J. Gu and X. Sun, “Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 880–882, Dec. 2005.
    [47] H.-S. Lee, K. Choi, and H.-Y. Hwang, “A harmonic and size reduced ring hybrid using coupled lines,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 259–261, Apr. 2007.
    [48] C.-H. Lai, Y.-C. Tseng, and T.-G. Ma, “Novel synthesized microstrip line with controllable transmission zeros for harmonic suppressions,” in Proc. 2010 Asia-Pacific Microw. Conf., Yokohama, Japan, pp. 602–605.
    [49] J.-T. Kuo, J.-S. Wu, and Y.-C. Chiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 46–48, Jan. 2007.
    [50] J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Miniaturized diplexer using synthesized microstrip lines with series LC tanks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 354–356, Jul. 2012.
    [51] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101–103, Feb. 2005.
    [52] M.-H. Weng, C.-Y. Hung, and Y.-K. Su, “A hairpin line diplexer for direct sequence ultra-wideband wireless communications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 519–521, Jul. 2007.
    [53] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583–585, Nov. 2011.
    [54] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 1945–1952, May 2006.
    [55] T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 551–553, Oct. 2010.
    [56] E. Ofli, R. Vahldieck, and S. Amari, “Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp. 843–851, Mar. 2005.
    [57] H.-J. Tang, W. Hong, J.-X. Chen, G.-Q. Luo, and K. Wu, “Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 776–782, Apr. 2007.
    [58] T. Yang, P.-L. Chi, and T. Itoh, “Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 10–12, Jan. 2011.
    [59] J. D. Rhodes and R. Levy, “Design of general manifold multiplexers,” IEEE Trans. Microw. Theory Techn., vol. MTT-27, no. 2, pp. 111–123, Feb. 1979.
    [60] J. D. Rhodes and R. Levy, “A generalized multiplexer theory,” IEEE Trans. Microw. Theory Techn., vol. MTT-27, no. 2, pp. 99–111, Feb. 1979.
    [61] T. Yang, P.-L. Chi, and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 260–269, Feb. 2011.
    [62] T. Ohno, K. Wada, and O. Hashimoto, “Design methodologies of planar duplexers and triplexers by manipulating attenuation poles,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 6, pp. 2088–2095, Jun. 2005.
    [63] M. Karlsson, P. Hakansson, and S. Gong, “A frequency triplexer for ultra-wideband systems utilizing combined broadside- and edge-coupled filters,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 794–801, Nov. 2008.
    [64] P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C.-H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4185–4192, Dec. 2006.
    [65] C.-W. Tang and M.-G. Chen, “Packaged microstrip triplexer with star-junction topology” Electron. Lett, vol. 48, no. 12, pp. 699–701, Jun. 2012.
    [66] J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173–175, Apr. 2012.
    [67] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 848–856, Apr. 2011.
    [68] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 534–536, Oct. 2011.
    [69] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 197–199, Apr. 2011.
    [70] J.-W. Sheen, “LTCC-MLC duplexer for DCS-1800,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 9, pp. 1883–1890, Sep. 1999.
    [71] C.-W. Tang and S.-F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 717–723, Feb. 2006.
    [72] T.-W. Kim and Y.-C. Lee, “A compact sized LTCC diplexer with high-band selectivity and high isolation for GSM and CDMA multi-band applications,” in Proc. 2009 Asia-Pacific Microw. Conf., Singapore, pp. 2080–2083.
    [73] M. Fritz and W. Wiesbeck, “A diplexer based on transmission lines, implemented in LTCC,” IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 427–432, Aug. 2006.
    [74] T. Kamgaing, R. Vilhauer, V. Nair, and D. Choudhury, “Embedded RF passive technology using a combination of multilayer organic package substrate and silicon-based integrated passive devices,” in Proc. 60th Electron. Comp. Technol. Conf., pp. 1547-1551, 2010.
    [75] J.-I. Yu, J.-M. Yook, J.-C. Park, C. H. Kim, and Y.-S. Kwon, “Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate,” in Proc. 5th Eur. Microw. Integr. Circuits Conf., pp. 329–332, 2010.
    [76] J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” Electron. Design, vol. 9, pp. 170–173, Apr. 1961.
    [77] A. Corona and M. J. Lancaster, “A high-temperature superconducting Butler matrix,” IEEE Trans. Appl. Supercond., vol. 13, no. 4, pp. 3867-3872, Dec. 2003.
    [78] E. Gandini, M. Ettorre, R. Sauleau, and A. Grbic, “A lumped-element unit cell for beam-forming networks and its application to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1477-1487, Apr. 2013.
    [79] H.-X. Xu, G.-M. Wang, and X. Wang, “Compact Butler matrix using composite right/left handed transmission line,” Electron. Lett., vol. 47, no. 19, pp. 1081–1083, Sep. 2011.
    [80] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 764–770, Apr. 2010.
    [81] C.-J. Chen and T.-H. Chu, “Design of a 60-GHz substrate integrated waveguide Butler matrix—a systematic approach,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 7, pp. 1724–1733, Jul. 2010.
    [82] A. A. M. Ali, N. J. G. Fonseca, F. Coccetti, and H. Aubert, “Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications,” IEEE Trans. Antennas Propagat., vol. 59, no. 2, pp. 503–512, Feb. 2011.
    [83] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propagat., vol. 58, no. 2, pp. 367–374, Feb. 2010.
    [84] T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273–2282, Nov. 2010.
    [85] C.-C. Chang, T.-Y. Chin, J.-C. Wu, and S.-F. Chang, “Novel design of a 2.5-GHz fully integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1757–1763, Aug. 2008.
    [86] B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, “An 8 × 8 Butler matrix in 0.13-um CMOS for 5-6 GHz multibeam applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 295–301, Feb. 2011.
    [87] C.-C. Kuo, H.-C. Lu, P.-A. Lin, C.-F. Tai, Y.-M. Hsin, and Huei Wang, “A fully SiP integrate V-band Butler matrix end-fire beam-switching transmitter using flip-chip assembled CMOS chips on LTCC,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1424–1436, May 2012.
    [88] Y.-S. Lin and J.-H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz application,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594–2602, Jul. 2013.
    [89] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 7, pp. 2970–2976, Jul. 2006.
    [90] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propagat., vol. 60, no. 1, pp. 206–211, Jan. 2012.
    [91] J. A. Vitaz, A. M. Buerkle, and K.S. Sarabandi, “Tracking of metallic objects using a retro-refective array at 26 GHz,” IEEE Trans. Antennas Propagat., vol. 58, no. 11, pp. 3539–3544, Nov. 2010.
    [92] K. M. K. H. Leong, Y. Wang, and T. Itoh, “A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1479–1489, May 2004.
    [93] M. S. Trotter, C. R. Valenta, G. A. Koo, B. R. Marshall, and G. D. Durgin, “Multi-antenna techniques for enabling passive RFID tags and sensors at microwave frequencies,” in Proc. 2012 IEEE International Conference on RFID, Orlando, FL, pp. 1–7.
    [94] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 9, pp. 1658–1662, Sep. 2001.
    [95] D. S. Goshi, K. M. K. H. Leong, and T. Itoh, “A sparse retrodirective transponder array with a time shared phase-conjugator,” IEEE Trans. Antennas Propagat., vol. 55, no. 8, pp. 2367–2372, Nov. 2010.
    [96] R. Y. Miyamoto, K. M. K. H. Leong, S.-S. Jeon, Y. Wang, Y. Qian, and T. Itoh, “Digital wireless sensor server using an adaptive smart-antenna retrodirective array,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1181–1188, Sep. 2003.
    [97] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
    [98] S.-C. Yen and T.-H. Chu, “A retro-directive antenna array with phase conjugation circuit using subharmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propagat., vol. 52, no. 1, pp. 154–164, Jan. 2004.
    [99] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp.1764–1773, Aug. 2008.
    [100] L. Chiu, Q. Xue, and C.-H. Chan, “A 4-element balanced retrodirective array for direct conversion transmitter,” IEEE Trans. Antennas Propagat., vol. 59, no. 4, pp. 1185–1190, Apr. 2011.
    [101] S.-N. Hsieh and T.-H. Chu, “Linear retro-directive antenna array using 90° hybrids,” IEEE Trans. Antennas Propagat., vol. 56, no. 6, pp. 1573–1580, Jun. 2008.
    [102] S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 2, pp.542–547, Feb. 2003.
    [103] L. Chen, X.-W. Shi, T.-L. Zhang, C.-Y. Cui, and H.-J. Lin, “Design of a dual-frequency retrodirective array,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 478–480, 2010.
    [104] L. Chen, T.-L. Zhang, S.-F. Liu, and X.-W. Shi, “A bidirectional dual-frequency retrodirective array for full-duplex communication applications,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 771–774, 2012.
    [105] S. Christie, R. Cahill, N. B. Buchanan, V. F. Fusco, N. Mitchell, Y. V. Munro, and G. Maxwell-Cox, “Rotman lens-based retrodirective array,” IEEE Trans. Antennas Propagat., vol. 60, no. 3, pp. 1343–1351, Mar. 2012.
    [106] Y.-J. Cheng, W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J.-X. Chen, J.-Y. Zou, and H.-J. Tang, “Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,” IEEE Trans. Antennas Propagat., vol. 56, no. 8, pp. 2504–2513, Aug. 2008.
    [107] Y.-J. Cheng, P. Chen, W. Hong, T. Djerafi, and K. Wu, “Substrate-integrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems,” IEEE Trans. Antennas Propag. Mag., vol. 53, no.6, pp. 18–30, Dec. 2011.
    [108] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New York: Wiley, 2006.
    [109] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.
    [110] J.-S. Wight, W.-J. Chudobiak, and V. Makios, “A microstrip and stripline crossover structure,” IEEE Trans. Microw. Theory Techn., vol. MTT-24, no. 5, p. 270, May 1976.
    [111] P. Bura and R. Dikshit, “FET mixers for communication satellite transponders”, in IEEE MTT-S Int. Microw. Symp. Dig., 1976, pp. 90–92.
    [112] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194-2196, Nov. 1998.

    QR CODE