簡易檢索 / 詳目顯示

研究生: 紀凱竣
Kai-Jun Ji
論文名稱: 寬頻化相位可調合成傳輸線與實現創新波束掃描陣列
Bandwidth Enhancement of Phase Tunable Synthesized Transmission Line and Its Applications to Innovative Beam Scanning Arrays
指導教授: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy Nam Chu
口試委員: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy Nam Chu
廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
陳晏笙
Yen-Sheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 138
中文關鍵詞: 合成傳輸線波束掃描陣列耦合器相移器相位陣列可調式功 率分配器交叉跨線單刀雙擲開關
外文關鍵詞: synthesized transmission line, Beam-scanning array, coupler, phase shifter, phased array, tunable power divider, crossover, SPDT
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種創新波束掃描陣列系統,該系統以新型平面可調式功率分配器為主要架構,結合單刀雙擲開關(SPDT)、相位可調合成傳輸線(PTSTLs)、藍基耦合器、交叉跨線等,整合形成1×4波束掃描陣列系統。與傳統的波束成形網路(Butler, Blass和Nolen矩陣)相比,所提出的結構可以實現連續掃描範圍,並減少輸入端的數量,以及具備寬頻的效應。1×4波束掃描陣列系統可以輕鬆擴充為4×4波束掃描陣列,使用較少的電路板組成,在二維方向上掃描。本論文將饋入電路與天線進行整合,完成波束掃描陣列之完整架構。經輻射場型之實驗量測,充分驗證其波束掃描之功能。

    為了實現全新波束掃描陣列系統與可調式功率分配器,本論文提出一款全新架構相移器。該架構由左手T型和右手π型集總電路所組成,用以實現相位可調之功能,與前人所提出的相位可重置合成傳輸線(PRSTL)不同。在調變過程中保持固定的相位調整範圍,因此可以實現寬頻的特性。所提出的相移器具有低成本和結構簡單的優點,因此可以輕鬆取代相位陣列或其它微波電路中不可避免的均勻傳輸線,同時,整體表現仍然可以與其它媲美。

    然後,將相位可調合成傳輸線(PTSTL)與兩個藍基耦合器進行連接,即可實現可調式功率分配器。取決於新型功率分配器具有非常寬的功率分配比調整範圍,因此提出了相移器的新概念。

    本論文詳盡討論此創新系統架構之設計概念、電路佈局,及模擬與量測結果,並進行適當分析討論。


    This paper proposes a novel beam scanning array system. The system uses a new planar tunable power divider (TPD) as the main building block. In conjunction with an SPDT, phase tunable synthesized transmission lines (PTSTLs), Lange coupler, and crossover, a 1×4 beam scanning array is integrated and realized. When compared with traditional beam-forming networks such as Butler, Blass, or Nolen matrices, the proposed structure can achieve continuous beam scanning with reduced number of input ports. It also has broadband operation. The 1×4 beam scanning array can be easily extended to a planar 4-by-4 array capable of scanning the main beam in two dimensions with a fewer number of the circuit boards. The feeding circuits are integrated with antennas to complete the beam scanning array. The beam scanning arrays proposed in this paper are fully verified by experimental results of radiation patterns.

    To fulfill the TPD and hence the beam scanning array, a new phase shifter consisting of left-handed and right-handed hand lumped circuits is proposed to realize the required phase tunability. Different from previous phase reconfigurable synthesized transmission lines (PRSTLs), the proposed phase shifter is able to keep an almost constant phase tuning range over a wide bandwidth to fulfill broadband operation. When compared with the commercial phase shifter, the proposed phase shifter features the advantage of low-cost and simple structure such that it can easily replace the inevitable uniform transmission line in a phased array with high degree of integration; meanwhile, the overall performances are still comparable to the others.

    The newly developed synthesized line is then applied to fulfill the tunable power divider by simply inserting the PTSTLs in between two Lange couplers. A very wide power division ratio tuning range is achieved thanks to the new phase shifter.
    This paper discusses the design concept, circuit layout, simulation and measurement results of the innovative system architecture in detail, along with some analysis and discussion.

    目錄 誌謝 I 摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 3 1.4 論文組織 4 第二章 波束掃描相位陣列之原理 5 2.1 前言 5 2.2 合成傳輸線 5 2.2.1 右手結構 5 2.2.2 左手結構 7 2.2.3 可重置合成傳輸線 9 2.2.4 相位可調合成傳輸線 9 2.3 系統架構與設計原理 10 2.3.1 1×4波束掃描陣列 10 2.3.1.1 可調式功率分配器 12 2.3.1.2 可調式功率分配器之應用 14 2.3.1.3 單刀雙擲開關 (SPDT) 16 2.3.2 4×4波束掃描陣列 17 2.4 結語 17 第三章 波束掃描陣列系統之構成元件 19 3.1 前言 19 3.2 相位可調合成傳輸線 19 3.2.1 相位可調合成傳輸線A 19 3.2.2 相位可調合成傳輸線B 31 3.3 單刀雙擲開關 (SPDT) 37 3.4 藍基耦合器 42 3.5 可調式功率分配器 47 3.6 交叉跨線 53 3.7 天線 57 3.8 結語 58 第四章 波束掃描陣列系統之實驗驗證 59 4.1 前言 59 4.2 1×4波束掃描陣列 59 4.2.1 電路驗證 59 4.2.1.1 ∆φ=0° 60 4.2.1.2 ∆φ=180° 62 4.2.1.3 ∆φ=-180° 64 4.2.2 輻射場型量測驗證 69 4.3 4×4波束掃描陣列 78 4.3.1 輻射場型驗證 78 4.4 結論 100 第五章 結論 101 5.1 總結 101 5.2 未來發展 102 參考文獻 103 附錄 109

    參考文獻
    T.-G. Ma, C.-W. Wang, C.-H. Lai, and Y.-C. Tseng, Synthesized transmission lines: design, circuit implementation, and phased array applications, 1^st ed. Singapore: Wiley,2017, pp. 27-29.
    Huy Nam Chu,「可重置合成傳輸線及其於可重置天線與相位陣列應用之研究」,博士論文,國立臺灣科技大學,民國一百零七年
    謝廷,「以可重置合成傳輸線實現單頻整合信號回溯/波束切換相位陣列」,碩士論文,國立臺灣科技大學,民國一百零五年
    https://www.microwaves101.com/encyclopedias/lange-couplers
    H. R. Fang, X. Tang, K. Mouthaan, and R. Guinvarc’h, “180 ° and 90 ° reflection-type phase shifters using over-coupled lange coupler,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3440–3448, Nov. 2012.
    W. Liu, Z. Zhang, and Z. Feng, “A compact wideband microstrip crossover,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 5, pp. 254-256, May 2012.
    F. Lin, “A planar balanced quadrature coupler with tunable power dividing ratio,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6515–6526, Aug. 2018.
    D. M. Pozar, Microwave Engineering, 4thed. New York: Wiley, 2011.
    S. J. Chung, S. M. Chen, and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
    S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna array using 90° hybrids,” IEEE Trans. Antennas Propagat., vol. 56, no. 6, pp. 1573- 1580, Jun. 2008.
    Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206–211, Jan. 2012.
    C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam switching/steering butler matrix for phased array system,” IEEE Trans. Antennas Propag., vol. 58, no.2, pp. 367-374, Feb. 2010.
    S. C. Yen and T. H. Chu, “A beam-scanning and polarization-agile antenna array using mutually coupled oscillating doublers,” IEEE Trans. Antennas Propaga., vol. 53, no. 12, pp. 4051–4057, Dec. 2005.
    R. Vescovo, “Reconfigurability and Beam Scanning With Phase-Only Control for Antenna Arrays,” IEEE Trans. Antennas Propaga., vol. 56, pp. 1555-1565, Jun. 2008.
    A. R. Dion and L. J. Ricardi, “A variable-coverage satellite antenna system,” Proc. IEEE, vol. 59, pp. 252-262, Feb. 1971
    T.N. Kaifas and J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications”, IEEE Antennas and Propagt. Mag., vol. 48, No. 6, pp. 193-204, Dec. 2006.
    K. Ding, F. He, X. Ying, and J. Guan, “A compact 8 × 8 Butler matrix based on double-layer structure,” in IEEE Int. Symp. Microw. Antenna Propag. EMC Techn.,2013, pp. 650-653.
    H. N. Chu and T.-G. Ma, “An extended 4×4 butler matrix with enhanced beam controllability and widened spatial coverage,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1301–1311, Mar. 2018.
    P. Chen, W. Hong, Z. Kuai, and K. Wu, “A double layer substrate integrated waveguide Blass matrix for beamforming applications,” IEEE Microwave Wireless. Compon. Lett., vol. 19, no. 6, pp. 374–376, Jun. 2009
    H. Ren, H. Zhang, Y. Jin, Y. Gu, and B. Arigong, “A novel 2-D 3×3 Nolen matrix for 2-D beamforming applications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4622–4631, Nov. 2019
    T. Djerafi and N. J. G. Fonseca, and K. Wu, “Planar Ku-band 4 × 4 Nolen matrix in SIW technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259–266, Feb. 2010.
    A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-Band RF MEMS Phase Shifters for Phased Array Applications,” IEEE Microwave and Guided Wave Lett., vol. 9, pp. 517–519, Dec. 1999.
    F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
    D.Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, “Composite right/left handed transmission line phase shifter using ferroelectric varactors,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 167–169, Apr. 2006.
    J.-C. Wu, T.-Y.Chin, S.-F. Chang, and C.-C.Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
    W. J.Liu, and S. Y. Zheng,Y. M. Pei, Y. X. Li, and Y. L. Long, “A wideband tunable reflection-type phase shifter with wide relative phase shift,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. PP, no. 99, Jan. 2017.
    C.-S. Lin, S.-F.Chang, and W.-C.Hsiao, “A Full-360° reflection-type phase shifter with constant insertion loss,”IEEE Trans. Microw. Theory Tech., vol. 18, no. 2, pp. 106–108, Feb. 2008.
    S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phaseshifter using SP4T RF-MEMS switches,”IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 894–900, Apr. 2011.
    K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,”IEEE Trans. Microw. TheoryTech., vol. 48, no. 8, pp. 1313-1317, Aug. 2000.
    N. Kingsley and J. Papapolymerou, “Organic ‘wafer-scale’ packaged miniature 4-bit RF MEMS phase shifter,”IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, pp. 1229–1236, Mar. 2006.
    B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J.Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
    H.-S. Lee and B.-W. Min, “W-band CMOS 4-bit phase shifter for high power and phasecompression points,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 1–5, Jan. 2015.
    G.-S. Shin et al., “Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications,”IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 37–39, Jan. 2016.
    S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Jun. 2000.
    D. Ehyaie, and A. Mortazawi, “A new approach to design low cost, low complexity phased arrays,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1270-1273, Oct. 2010.
    C.-W. Wang, T.-G Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
    C. C. Wang, C. H. Lai and T. G. Ma, “Miniaturized Coupled-Line Couplers Using Uniplanar Synthesized Coplanar Waveguides,”IEEE Trans. Microw. Theory Techn.,vol. 58, no. 8, pp. 2266-2276, Aug. 2010.
    M. R. M. Hashemi and T. Itoh, “Dual-band composite right/left-handed metamaterial concept,” IEEE Microw. Wireless Comp. Lett., vol. 22, no. 5, pp. 248-250, May 2012.
    L. Chang and T. G. Ma, “Dual-mode branch-line/rat-race coupler using composite right-/left-handed lines,” IEEE Microw. Wireless Comp. Lett., vol. 27, no. 5, pp. 449-451, May 2017.
    J. H. Choi and T. Itoh, “Dual-band composite right/left-handed (CRLH) phased-array antenna,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 732-735, 2012.
    C. H. Lai, C. Y. Shiau, and T. G. Ma, “Microwave three-channel selector using tri-mode synthesized transmission lines,”IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3529-3540, Oct. 2013.
    J. Y. Zou, C. H. Wu and T. G. Ma, “Heterogeneous integrated beam-switching/ retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
    C. H. Lai, G. T. Zhou, and T. G. Ma, “On-chip miniaturized diplexer using jointed dual-mode right-/left-handed synthesized coplanar waveguides on GIPD process,” IEEE Microw. Wireless Comp. Lett., vol. 24, no. 4, pp. 245-247, April 2014.
    H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, “Linear tunable phase shifter using a left handed transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 366–368, May 2005.
    周冠廷,「以雙模態左手合成傳輸線實現多款整合信號回溯/波束切換相位陣列天線」,碩士論文,國立臺灣科技大學,民國一百零三年
    J.-W. Lian, Y.-L. Ban, Q.-L. Yang, B. Fu, Z.-F. Yu, and L.-K. Sun, “Planar millimeter-wave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network,” IEEE Trans. Antennas Propaga., vol. 66, no. 3, pp. 1299–1310, Mar. 2018.
    A. B. Guntupalli, T. Djerafi, and K. Wu, ‘‘Two-dimensional scanning antenna array driven by integrated waveguide phase shifter,’’ IEEE Trans. Antennas Propaga., vol. 62, no. 3, pp. 1117–1124, Mar. 2014.
    G. W. Yang, J. Y. Li, S. G. Zhou, and Y. X. Qi, “A wide-angle E-plane scanning linear array antenna with wide beam elements,” IEEE Antennas Wireless Propaga. Lett., vol. 16, pp. 2923–2926, 2017.
    Datasheet of Skywork SMV1405 [Online]. Available: http://www.skyworksinc.com/Product/552/SMV1405_Series

    無法下載圖示 全文公開日期 2025/07/24 (校內網路)
    全文公開日期 2025/07/24 (校外網路)
    全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE