簡易檢索 / 詳目顯示

研究生: 黃柏齊
Bo-Chi Huang
論文名稱: 具有高電流增益值與轉換效率 之有機近紅外光上轉換元件
Organic near-infrared upconversion device with high current gain and conversion efficiency
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
王煥宗
Huan-Chun Wang
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 有機上轉換元件有機光偵測器有機發光二極體
外文關鍵詞: Organic upconversion, Organic photodetector, Organic light emitting diode
相關次數: 點閱:239下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用全有機系統做為上轉換元件之材料,結合有機太陽能電
    池(Organic photovoltaic, OPV)、有機光偵測器(Organic photodetector, OPD)
    與有機電激發光二極體(Organic light emitting diode, OLED)之特性設計上
    轉換元件,主要使不可見光(NIR)經由元件內部光→電→光之轉換為可見光
    之波段,本篇論文使用單層氯鋁酞菁(Chloroaluminum phthalocyanine,
    ClAlPc)作為有機上轉換元件載子產生層,並以有機光偵測器之結構分析其
    特性,最終結合高效率有機磷光錯體發光二極體做為發光單元。
    首先利用OPV 結構驗證其使用單ClAlPc 與混合C70 之結構於780 nm
    擁有接近之外部量子效率,並透過元件設計以有機光偵測器模式分析
    ClAlPc 做為載子產生層(Charge generation layer, CGL)之特性,最終結合
    OLED,透過量測計算其擁有15.48% (p/p)上轉換效率以及1685 cd/m2 之高
    亮度於照射NIR LED 5 mW/cm2 強度下,以及弱光之感測能力於NIR LED
    0.5 mW/cm2 強度下擁有200 cd/m2 之亮度。


    The whole paper describes that all-organic system is used as the material
    of upconversion devices. The characteristics of upconversion device designs
    are combined with organic photovoltaic(OPV); organic photodetector(OPD)
    and organic light emitting diode(OLED). The device mainly converts invisible
    light (NIR) into visible light through device internal. The organic upconversion
    device of this paper is composed of Chloroaluminum Phthalocyanine used as
    charge generation layer and OPD structure which is used to analyze the
    characteristics and high-efficiency organic exciplex emitting diode finally used
    as a emitting cell respectively.
    Firstly, the OPV structure is used to verify that single ClAlPc and mixed
    C70 show approximate External Quantum Efficiency(EQE) at 780nm. Secondly,
    we analyze the characteristics of ClAlPc as charge generation layer with
    hole-supplying OPD model through design of device. Finally, we combined
    OPV and OPD with OLED. In summary, the upconversion device shows
    15.48% of upconversion efficiency and 1685 cd/m2 of high intensity when it is
    irradiated by 5 mW/cm2 NIR LED; moreover, the sensitivity of weak light
    shows 200 cd/m2 of intensity irradiated by 0.5 mW/cm2 NIR LED.
    KEYWORDS: Organic upconversion、Organic photodetector、Organic light
    emitting diode.

    I. 目錄 致謝 ...................................................................................................................... I 中文摘要 ............................................................................................................. II Abstract .............................................................................................................. III I.目錄 ................................................................................................................. IV II.圖目錄 ........................................................................................................... VII III.表目錄 ........................................................................................................... XI 第一章 緒論 ....................................................................................................... 1 1.1 引言 ............................................................................................................... 1 1.2 上轉換元件研究文獻與開發背景整理.......................................................... 2 1.3.1 無機系統.............................................................................................. 6 1.3.2 混合系統.............................................................................................. 8 1.3.3 有機系統............................................................................................ 16 1.3 有機上轉換元件未來發展............................................................................ 25 第二章 理論基礎 ............................................................................................. 26 2.1 有機半導材料之機制.................................................................................... 26 2.2 有機太陽能電池光與光偵測器工作原理.................................................... 29 2.3 有機發光二極體工作原理............................................................................ 32 2.4 有機上轉換元件工作原理............................................................................ 35 2.5 量測單位與指標............................................................................................ 36 2.5.1 有機太陽能電池(OPV)與偵測器量測單位與定義 ......................... 37 2.5.2 有機光發光二極體(OLED)量測單位與定義 .................................. 38 2.5.3 上轉換元件量測單位與定義............................................................ 39 第三章 實驗儀器設備 ..................................................................................... 41 3.1 實驗儀器........................................................................................................ 41 3.1.1 超音波清洗機.................................................................................... 41 3.1.2 旋轉塗佈機........................................................................................ 41 3.1.3 加熱板................................................................................................ 42 3.1.4 紫外光曝光機.................................................................................... 42 3.1.5 氧電漿清潔機.................................................................................... 43 3.1.6 手套箱系統........................................................................................ 44 3.1.7 高真空熱蒸鍍系統............................................................................ 45 3.1.8 膜厚量測系統(α-step) ....................................................................... 46 3.1.9 輝度計................................................................................................ 47 3.1.10 太陽光模擬器................................................................................... 47 3.1.11 外部量子效率量測系統.................................................................... 48 3.1.12 光電子光譜儀(AC-2) ....................................................................... 49 3.1.13UV 光譜儀 ......................................................................................... 50 3.1.14NIR LED ............................................................................................ 50 3.1.15NIR Laser ........................................................................................... 51 3.1.16 橢圓偏振儀....................................................................................... 51 3.1.17 功率計(Power Meter) ....................................................................... 52 3.1.18 材料純化系統................................................................................... 52 3.1.19 原子力顯微鏡(Atomic force microscope, AFM) ............................. 52 3.1.20 積分球............................................................................................... 53 3.2 實驗前置準備................................................................................................ 54 3.2.1 有機材料純化.................................................................................... 54 3.2.2 黃光微影製程(Photolithography) ..................................................... 54 3.3 實驗步驟........................................................................................................ 56 3.3.1 元件基板清洗.................................................................................... 56 3.3.2 氧電漿清潔........................................................................................ 57 3.3.3 真空熱蒸鍍製程................................................................................ 57 3.3.4 元件封裝............................................................................................ 58 第四章 研究成果與討論 ................................................................................. 60 4.1 載子產生層(Charge generation layer, CGL)之選擇 ..................................... 60 4.2 CGL 層之OPV 測試與分析......................................................................... 61 4.3 上轉換元件CGL:C70 暗電流探討 ............................................................... 64 4.4 光偵測器之效能探討.................................................................................... 65 4.4.1 元件操作機制與結構設計................................................................ 66 4.4.2 元件J-V 特性 .................................................................................... 67 4.4.3 元件Bias EQE ................................................................................... 67 4.4.4 元件偵測度與LDR 之量測.............................................................. 68 4.5 OLED 元件設計與效能分析 ........................................................................ 70 4.6 有機上轉換元件效能分析............................................................................ 72 4.6.1 CGL 厚度對於上轉換元件之特性探討........................................... 73 4.6.2 上轉換元件之反應速度.................................................................... 75 4.6.3 上轉換元件之感測度測試................................................................ 76 4.6.4 上轉換元件發光單元測試................................................................ 78 第五章結論 ....................................................................................................... 81 參考資料 ........................................................................................................... 82

    [1] C. W. Tang and S. VanSlyke, “Organic electroluminescent diodes,” Appl.
    Phys. Lett., 51, 913 (1987).
    [2] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik“Ultralow-power
    organic complementary circuits,” Nature., 15, 445 (2007).
    [3] P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y.
    Noh, “Polymer and Organic Nonvolatile Memory Devices,” Chem. Mater, 23,
    341 (2011).
    [4] C. W. Tang, “Two‐layer organic photovoltaic cell,” Appl. Phys. Lett, 48, 183
    (1986).
    [5]B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L.
    Svaasand and J. Butler, “Non-invasive in vivo characterization of breast tumors
    using photon migration spectroscopy,” Neoplasia, 2, 26 (2000).
    [6]J. Tao, J.Chen, D. Ban, M .G. Helander and Z. H. Lu, “Optical
    up-conversion devices for infrared detection and imaging,” Sci. Adv. Mater., 4,
    266 (2012).
    [7] X. Gao, Y. Cui, R. M. Levenson, L.W.K.Chung and S. Nie, “In vivo
    cancer targeting and imaging with semiconductor quantum dots,” Nat.
    Biotechnol., 22, 969 (2004).
    [8] K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D.
    Daranciang and H. Dai, “A route to brightly fluorescent carbon nanotubes for
    near-infrared imaging in mice,” Nat. Nanotechnol., 4, 773 (2009).
    [9] R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G.
    Lovhoiden and C. Vrancken, “Vein imaging: a new method of near infrared
    imaging, where a processed image is projected onto the skin for the
    enhancement of vein treatment,” Dermatol. Surg., 32, 1031 (2006).
    [10] J. S. Sandhu, A. P. Heberle, B. W. Alphenaar and J. R. A. Cleaver,
    “Near-infrared to visible up-conversion in a forward-biased Schottky diode
    with a p-doped channel,” Appl. Phys. Lett., 76, 1507 (2000).
    [11] J. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada and K. Yase,
    “Organic light-emitting diode with TiOPc layer–a new multifunctional
    optoelectronic device,” Jpn. J. Appl. Phys., 40, L948 (2001).
    [12] M. Chikamatsu, Y. Ichino, N. Takada, M. Yoshida, T. Kamata and K. Yase,
    “Light up-conversion from near-infrared to blue using a photoresponsive
    organic light-emitting device,” Appl. Phys. Lett., 81, 769 (2002).
    [13] K. J. Russell, I.Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M.
    P. Hanson and A. C. Gossard, “Room- temperature electro-optic
    up-conversion via internal photoemission,” Appl. Phys. Lett., 82, 2960 (2003).
    [14] H. Luo, D. Ban, H. C. Liu, P. J. Poole and M. Buchanan, “Pixelless
    imaging device using optical up-converter,” IEEE Electron Device Lett., 25,
    129 (2004).
    [15] D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. Spring Thorpe, R.
    Glew and M. Buchanan, “Optimized GaAs∕AlGaAs light-emitting diodes and
    high efficiency wafer-fused optical up-conversion devices,” J. Appl. Phys., 96,
    5243 (2004).
    [16] D. Ban, S. Han, Z. H. Lu, T. Oogarah, A. J. SpringThorpe and H. C. Liu,
    “Near-infrared to visible light optical upconversion by direct tandem
    integration of organic light-emitting diode and inorganic photodetector,” Appl.
    Phys. Lett., 90, 093108 (2007).
    [17] J. Chen, D. Ban, X. Feng, Z. Lu, S. Fathololoumi, A. J. SpringThorpe and
    H. Liu, “Enhanced efficiency in near-infrared inorganic/organic hybrid optical
    upconverter with an embedded mirror,” J. Appl. Phys., 103, 103112 (2008).
    [18] D. Y. Kim, D. W. Song, N. Chopra, P. De Somer and F. So, “Organic
    infrared upconversion device,” Adv. Mater., 22, 2260 (2010).
    [19] J. Chen, D. Ban, M. G. Helander, Z. H. Lu and P. Poole, “Near‐infrared
    inorganic/organic optical upconverter with an external power efficiency
    of>100%,” Adv. Mater., 22, 4900 (2010).
    [20] Y. Okawa, S. Naka and H. Okada, “Enhancement of electron injection in
    organic light-emitting diodes with photosensitive charge generation layer,” Jpn.
    J. Appl. Phys., 50, 01BC11 (2011).
    [21] D. Y. Kim, K. R. Choudhury, J. W. Lee, D. W. Song, G. Sarasqueta and F.
    So, “PbSe nanocrystal-based infrared-to-visible up-conversion device,” Nano
    Lett., 11, 2109 (2011).
    [22] M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu and Y. Zeng,
    “Organic light-emitting diodes with integrated inorganic photo detector for
    near-infrared optical up-conversion,” Org. Electron., 12, 2090 (2011).
    [23] X. Chu, M. Guan, L. Li, Y. Zhang, F. Zhang, Y. Li, Z. Zhu, B. Wang and Y.
    Zeng, “Improved efficiency of organic/inorganic hybrid near-infrared light
    upconverter by device optimization,” ACS Appl. Mater. Interfaces, 4, 4976
    (2012).
    [24] J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu and Z. Lu,
    “Hybrid organic/inorganic optical up-converter for pixel-less near-infrared
    imaging,” Adv. Mater., 24, 3138 (2012).
    [25] X. Chu, M. Guan, L. Niu, Y. Zeng, Y. Li, Y. Zhang, Z. Zhu and B.
    Wang, “Fast responsive and highly efficient optical upconverter based on
    phosphorescent OLED,” ACS Appl. Mater. Interfaces, 6, 19011 (2014).
    [26] D. Y. Kim, T. H. Lai, J. W. Lee, J. R. Manders and F. So, “Multi-spectral
    imaging with infrared sensitive organic light emitting diode,” Sci. Rep., 4, 5946
    (2014).
    [27]S. W. Liu, C. C. Lee, C.H. Yuan, W. C Su, S.Y. Lin, W. C. Chang, B. Y.
    Huang, C. F. Lin, Y. Z. Lee, T. H. Su and K.T. Chen, “Transparent organic
    upconversion devices for near-infrared sensing. ” Adv. Mater. 27, 1217 (2015).
    [28] Wenli Lv, Junkang Zhong, Yingquan Peng, Yao Li, Xiao Luo, Lei Sun,
    Feiyu Zhao, Jianping Zhang, Hongquan Xia, Ying Tang, Sunan Xu and Ying
    Wang “Organic near-infrared upconversion devices: Design principles and
    operation mechanisms” Org. Electron, 31, 258 (2016).
    [29] H Tachibana, N Aizawa, Y Hidaka and T Yasuda “Tunable Full-Color
    Electroluminescence from All-Organic Optical Upconversion Devices by
    Near-Infrared Sensing” ACS Photonics, 4, 223 (2017).
    [30] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of
    trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys, 43, 5033 (1972).
    [31] R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in
    Organic Molecular Solids. Comparison of Band and Hopping Models,” J.
    Chem. Phys., 44, 3797 (1966).
    [32] I. G. Hill, A. Kahn, Z. G. Soos, and J. Pascal, R.A., “Charge-separation
    energy in films of π-conjugated organic molecules, ” Chem. Phys. Lett., 327,
    181, (2000).
    [33] M. Knupfer, “Exciton binding energies in organic semiconductors, ” Appl.
    Phys., 77, 623 (2003)
    [34] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci,
    M.Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area,
    organic solar cells,”Sol. Energy Mater. Sol. Cells, 91, 379 (2007).
    [35] B. Leckner, “The spectral distribution of solar radiation at the earth's
    surface-elements of a model,” Sol. Energy, 20, 143 (1978).
    [36] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight
    organic thin-film photodetectors and solar cells, ” J. Appl. Phys., 93, 3693
    (2003).
    [37] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov,
    “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, ” Adv.
    Mater., 19, 1551 (2007).
    [38] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, et al.,
    “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by
    Transient Absorption Spectroscopy, ” J. Am. Chem. Soc., 130, 3030 (2008).
    [39] J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular
    Understanding of Organic Solar Cells: The Challenges, ” Accounts Chem. Res.,
    42,1691 (2009).
    [40] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in
    Organic Crystals,” J. Chem. Phys, 38, 2042 (1963).
    [41] C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, “Recent developments in
    the synthesis of red dopants for Alq3 hosted electroluminescence,” Thin Solid
    Films, 363, 327 (2000).
    [42] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
    Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from
    organic electroluminescent devices,” Nature, 395, 151 (1998).
    [43] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R.
    Forrest, “Management of singlet and triplet excitons for efficient white organic
    light-emitting devices,” Nature, 440, 908 (2006).
    [44] P. He, S. D. Wang, W. K. Wong, L. F. Cheng, C. S. Lee, S. T. Lee, et al.,
    “Vibrational analysis of oxygen-plasma treated indium tin oxide, ” Chem. Phys.
    Lett., 370, 795 (2003).
    [44] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh,
    B. Nilsson and A. J. Heeger, “High-Detectivity Polymer Photodetectors with
    Spectral Response from 300 nm to 1450 nm, ” Science, 325, 5948 (2009)
    [45] Y. S. Park , S. Lee , K. H. Kim , S. Y. Kim , J. H. Lee and J. J. Kim,
    “Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate
    Efficiency,”Adv. Funct. Mater., 23, 4914 (2013).

    QR CODE