簡易檢索 / 詳目顯示

研究生: 陳柏霖
Bo-Lin Chen
論文名稱: 以新穎供體與發光體材料製作高外部量子效率的近紅外之有機發光二極體之研究
Novel Donor and Emitter Materials for High External Quantum Efficiency Near-Infrared Organic Light Emitting Diodes
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: exciplex電子傳輸層近紅外光高效率OLED
外文關鍵詞: exciplex, electron transport layer, near infrared light, high efficiency, OLED
相關次數: 點閱:280下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著OLED在可見光領域中發展得相當成熟,科學家也開始將目光放到近紅外光的領域,雖然近紅外光的元件受限於能隙定律等因素產生低效率的問題,但科學家利用重金屬複合物、TADF、exciplex等方法來提高元件的效率。
    本論文是以exciplex原理玩基礎,開發出兩支主體材料1-SF與2-SF並搭配CN-T2T混合形成exciplex的主體材料,再以其放光光譜來開發出一支專屬的客體放光材料TT-SF,接下來我們進行一連串光學分析用以證實發光層的exciplex系統能完全將能量轉移至客體材料,我們開始確認客體材料摻雜的最佳濃度以確保在主體不殘留的情況下使元件有最高的效率。
    接下來我們將電洞注入層、電洞傳輸層與電子傳輸層一一確認其最佳的厚度最後我們得到以1-SF:CN-T2T:TT-SF和2-SF:CN-T2T:TT-SF為發光層最佳結構的元件主峰分別在772 nm和767 nm而外部量子效率達5.17 %與4.29 %,為高效率的近紅外光OLED元件,其中較為特別的地方是最佳結構中的電子傳輸層厚度需要100 nm,這使我們再進一步的研究中發現電子傳輸層的厚度變化會對於元件產生光學效應。


    As OLED has matured in the visible light field, scientists have begun to focus on the near-infrared light field. Although the near-infrared light component is limited by the energy gap law and other factors, the problem of low efficiency, but scientists use heavy metal composites, TADF, exciplex and other methods to improve the efficiency of the component.
    This paper is based on the principle of exciplex, developed two host materials 1-SF and 2-SF and mixed with CN-T2T to form the host material of exciplex, and then developed an exclusive guest luminescence based on its emission spectrum Material TT-SF, and then we conduct a series of optical analysis to confirm that the exciplex system of the light-emitting layer can completely transfer energy to the guest material. We start to confirm the optimal concentration of the guest material doping to ensure that the host does not remain the components have the highest efficiency.
    Next, we will confirm the optimal thickness of the hole injection layer, hole transport layer and electron transport layer one by one. Finally, we get the values of 1-SF:CN-T2T:TT-SF and 2-SF:CN-T2T:TT -SF is the element with the best structure of the light-emitting layer. The main peaks are at 772 nm and 767 nm, and the external quantum efficiency is 5.17% and 4.29%. It is a high-efficiency near-infrared OLED element, and the more special part is the best structure. The thickness of the electron transport layer needs to be 100 nm, which led us to further research and found that the change in the thickness of the electron transport layer will have an optical effect on the device.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 第二章 文獻回顧 2 2-1 有機發光元件發展史 2 2-1-1可見光 2 2-1-2近紅外光 5 2-2 有機發光元件結構介紹 8 2-3 有機發光元件發光原理 9 2-3-1基礎理論 9 2-3-2主客體能量轉移機制 9 2-3-3基激複合態 13 2-3-4激基複合態之特性 15 2-4文獻探討 16 2-5研究動機與目的 21 第三章 製成介紹 22 3-1設備介紹 22 3-2實驗流程 24 3-3實驗商用材料 27 第四章 實驗結果與討論 29 4-1 SF系列材料介紹 29 4-2 近紅外光有機發光元件結構優化 36 4-2-1 近紅外光有機發光元件之發光層客體材料摻雜濃度測試 38 4-2-2近紅外光有機發光元件之電洞注入層厚度測試 40 4-2-3近紅外光有機發光元件之電洞傳輸層厚度測試 43 4-2-4近紅外光有機發光元件之電子傳輸層厚度測試 46 4-2-5近紅外光有機發光元件最佳結構之比較 57 4-3 實驗結果 63 第五章 結論與未來展望 65 參考文獻 66

    [1] Y.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H-F. Hsu, Y. Chi and P.-T. Chou, Nat. Photonics, 14, 570 (2020).
    [2] M. Pope, H. P. Kallman and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [3] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
    [4] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    [5] C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys., 65, 3610 (1989).
    [6] R. Englman, J. Jortner, Mol. Phys., 18, 145 (1970).
    [7] M. Bixon, J. Jortner, J. Codes, M. E. Michel-Beyerle, J. Phys. Chem., 98, 1289 (1994).
    [8] A. I. Burshtein, E. Krissinel, J. Phys. Chem., 100, 3005 (1996).
    [9] A. Zambetti, A. Minotto, F. Cacialli, Adv. Funct. Mater., 29, 1807623 (2019).
    [10] L. Yao, S. T. Zhang, R. Wang, W. J. Li, F. Z. Shen, B. Yang, Y. G. Ma, Angew. Chem. Int. Ed., 53, 2119 (2014).
    [11] D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 74, 442 (1999).
    [12] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
    [13] K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang and Y. Chi, Nat. Photonics, 11, 63 (2016).
    [14] Y. Li, J. Yao, C. Wang, X. Zhou, Y. Xu, M. Hanif, X. Qiu, D. Hu, D. Ma, Y. Ma, Dyes Pigm., 173, 107960 (2020).
    [15] H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234 (2012).
    [16] W. Song, J. Y. Lee, Org. Electron., 48, 285 (2017).
    [17] T. Forster, Discuss. Faraday Soc., 27, 7 (1959).
    [18] D. L. Dexter, J. Chem. Phys., 21, 836 (1953).
    [19] M. Zhu and C. Yang, Chem. Soc. Rev., 42, 4963 (2013).
    [20] P. D. Laible, R. S. Knox and T. G. Owens, J. Phys. Chem. B, 102, 1641 (1998).
    [21] Z. Wang, C. Wang, H. Zhang, Z. Liu, B. Zhao, W. Li, Org. Electron., 66, 227 (2019).
    [22] K.-H. Kim, C.-K. Moon, J. W. Sun, B. Sim, and J.-J. Kim, Adv. Opt. Mater., 7, 895 (2015).
    [23] T. Lin, T. Zhang, Q. Song, F. Jin, Z. Liu, Z. Su, Y. Luo, B. Chu, C. S. Lee, W. Li, Org. Electron., 38, 69 (2016).
    [24] K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photonics, 6, 253 (2012).
    [25] Y.-C. Lo, T.-H. Yeh, C.-K. Wang, B.-J. Peng, J.-L. Hsieh, C.-C. Lee, S.-W. Liu and K.-T. Wong, ACS Appl. Mater. Interfaces, 11, 23417 (2019).
    [26] C.-Y. Huang, S.-Y. Ho, C.-H. Lai, C.-L. Ko, Y.-C. Wei, J.-A. Lin, D.-G. Chen, T.-Y. Ko, K.-T. Wong, Z. Zhang, W.-Y. Hung and P.-T. Chou, J. Mater. Chem. C, 8, 5704 (2020).
    [27] D. Graves , V. Jankus, F. B. Dias and A. Monkman, Adv. Funct. Mater., 16, 2343 (2014)
    [28] W.-Y. Hung, P.-Y. Chiang, S.-W. Lin, W.-C. Tang, Y.-T. Chen, S.-H. Liu, P-T. Chou, Y.-T. Hung and K.-T. Wong, ACS Appl. Mater. Interfaces, 8, 4811 (2016)..
    [29] D. H. Huha, G. W. Kimb, G. H. Kimb, C. Kulshreshtha, J. H. Kwonb, Synth. Met., 180, 79 (2013).
    [30] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, H. Wu, X. Yan, F. Jin, Y. Gao and C. Liu, Sci. Rep., 5,10697 (2015).
    [31] J. Zhao, J. Ye, X. Du, C. Zheng, Z. He, H. Yang, M. Zhang, H. Lin and S. Tao, Chem Asian J, 23,4093(2020).

    QR CODE