簡易檢索 / 詳目顯示

研究生: 林俊宏
Chun-Hung Lin
論文名稱: 在城市車載網路中聯合考慮車輛位置、行徑方向和空間 關係之優化緊急訊息傳播
Optimized Emergency Messages Dissemination by Jointly Considering Positions, Directions, and Spatial Relationship of Vehicles in the Urban Vehicular Ad Hoc Network
指導教授: 馮輝文
Huei­-Wen Ferng
口試委員: 黃琴雅
Chin-Ya Huang
吳中實
Zhong-Shih Wu
謝宏昀
Hung-Yun Hsieh
馮輝文
Huei­-Wen Ferng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 車載網路緊急訊息廣播中繼車輛挑選廣播抑制
外文關鍵詞: VANETs, Messages Dissemination, Relay Vehicle Selection, Broadcast Suppression
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在車載網路 (Vehicular Ad Hoc Network, VANET) 中,緊急訊息 (Emergency Message) 能夠透過廣播的運用,使得道路上的駕駛人提前得知附近的危險區域,進而改道避免前往該區域。然而,緊急訊息需要即時 (Real-Time) 地讓周圍道路使用者知道,因此,該如何選擇最佳的中繼車輛 (Relay Vehicle),讓訊息能夠快速地通知駕駛人,且花費最少的網路資源成了一個值得探討的問題。於是,本碩士論文設計了一種挑選中繼車輛的演算法,其根據單跳 (One-Hop) 鄰居與訊息源車輛 (Source Vehicle) 間的距離進行篩選,再將過濾出的候選車輛進行詳細的分類,最後,依照其方向性與區域性挑選出中繼車輛。而為了防止選出的中繼車輛數量不符合當前道路的密度所需,本碩士論文還提出了一種根據兩跳 (Two-Hop) 內車輛間的空間關係以進一步的挑選中繼車輛。透過模擬的方式,本碩士論文所提出的方法與相關的文獻進行比較,其不僅在覆蓋率 (Coverage Ratio) 方面有所提升,在相同接收程度下的重複廣播次數 (Retransmission Times) 和重複封包接收次數 (Duplicate Packets) 都能有所下降。


    In the vehicular ad hoc network (VANET), the emergency message can be used through broadcasting so that drivers on the road can know the nearby dangerous areas in advance, then diverting to avoid going to these areas. However, emergency messages need to be known by surrounding users in real-time manner. Therefore, how to choose the best relay vehicle so that the message can be quickly forwarded to the driver and consume the least amount of network resources becomes an issue worth discussing. Towards this goal, this thesis will design an algorithm for selecting relay vehicles through screening via the distance between the one-hop neighbors and the source vehicle with detailed analysis on the filtered candidate vehicles. Accordingly, relay vehicles are selected based on their directionality and regionality. In order to prevent the number of selected relay vehicles from mismatching the current road density requirement, this thesis also incorporate the spatial relationship between two-hop vehicles to our selection of relay vehicles. Via simulations, we successfully demonstrate that our proposed method not only improves the coverage ratio but also improves the number of retransmission times and the number of times of duplicate packets as compared to the closely related methods in the literature.

    論文指導教授推薦書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 車載網路簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 廣播類型簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 論文組織 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 第二章、相關文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 叢集式架構的廣播機制 . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 分散式架構的廣播機制 . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 行徑路徑為基礎的廣播機制 . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 路徑計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 中繼車輛挑選 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 本地中心性為基礎的廣播機制 . . . . . . . . . . . . . . . . . . . . . . 13 第三章、所提方法之流程與設計 . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 問題描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 車輛與網路設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 中繼車輛挑選 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 相對距離 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 位置區域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 移動方向 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 空間關係廣播抑制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第四章、數值討論與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 模擬環境參數設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 績效指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 各個方法的重新廣播次數 . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 各個方法的重複封包個數 . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 各個方法的覆蓋率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 各方法的延遲時間 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7 演算法之複雜度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7.1 空間複雜度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.7.2 時間複雜度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第五章、結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    [1] P. Chouhan, G. Kaushal, and U. Prajapat, “Comparative study MANET and VANET,” International Journal of Engineering And Computer Science, vol. 5, pp. 16079–16083, Apr. 2016.
    [2] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless access in vehicular environments,” in Proc. IEEE Vehicular Technology Conference (VTC), pp. 2036–2040, May 2008.
    [3] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 10, no. 2, pp. 88–105, Jul. 2008.
    [4] S. Panichpapiboon and W. Pattara-atikom, “A review of information dissemination protocols for vehicular ad hoc networks,” IEEE Communications Surveys & Tutorials, vol. 14, no. 3, pp. 784–798, Aug. 2012.
    [5] “Road traffic injuries.” https://www.who.int/news-room/fact-sheets/ detail/road-traffic-injuries. Accessed: 2022-11-15.
    [6] X. Yang, L. Liu, N. Vaidya, and F. Zhao, “A vehicle-to-vehicle communication protocol for cooperative collision warning,” in Proc. International Conference on Mobile and Ubiquitous Systems: Networking and Services (ICMUSNS), pp. 114–123, Sep. 2004.
    [7] Y. Toor, P. Muhlethaler, A. Laouiti, and A. D. La Fortelle, “Vehicle ad hoc networks: Applications and related technical issues,” IEEE Communications Surveys & Tutorials, vol. 10, no. 3, pp. 74–88, Sep. 2008.
    [8] S. S. Shah, A. W. Malik, A. U. Rahman, S. Iqbal, and S. U. Khan, “Time barrierbased emergency message dissemination in vehicular ad-hoc networks,” IEEE Access, vol. 7, pp. 16494–16503, Jan. 2019.
    [9] A. Nahar, H. Sikarwar, and D. Das, “CSBR: A cosine similarity based selective broadcast routing protocol for vehicular ad-hoc networks,” in Proc. IFIP Networking Conference, pp. 404–412, Jul. 2020.
    [10] S. Ullah, G. Abbas, M. Waqas, Z. H. Abbas, and S. Tu, “Position-based vehicular clustering for emergency messages dissemination in zone of interest,” in Proc. Asia Symposium on Signal Processing (ASSP), pp. 61–66, Mar. 2021.
    [11] I. S. Alkhalifa and A. S. Almogren, “NSSC: Novel segment based safety message broadcasting in cluster-based vehicular sensor network,” IEEE Access, vol. 8, pp. 34299–34312, Feb. 2020.
    [12] G. I. Sayed, A. Darwish, and A. E. Hassanien, “Chaotic crow search algorithm for engineering and constrained problems,” in Proc. International Conference on Computer Engineering and Systems (ICCES), pp. 676–681, Feb. 2017.
    [13] T. C. Wang, J. L. Liang, and C. Y. Ho, “Multi-criteria decision analysis by using fuzzy VIKOR,” in Proc. International Conference on Service Systems and Service Management (ICSSSM), vol. 2, pp. 901–906, Feb. 2006.
    [14] O. K. Tonguz, N. Wisitpongphan, and F. Bai, “DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks,” IEEE Wireless Communications, vol. 17, no. 2, pp. 47–57, Apr. 2010.
    [15] L. Briesemeister and G. Hommel, “Role-based multicast in highly mobile but sparsely connected ad hoc networks,” in Proc. Mobile and Ad Hoc Networking and Computing (MobiHOC), pp. 45–50, Aug. 2000.
    [16] N. Wisitpongphan, O. Tonguz, J. Parikh, P. Mudalige, F. Bai, and V. Sadekar, “Broadcast storm mitigation techniques in vehicular ad hoc networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 84–94, Dec. 2007.
    [17] D. Tian, C. Liu, X. Duan, Z. Sheng, Q. Ni, M. Chen, and V. C. M. Leung, “A distributed position-based protocol for emergency messages broadcasting in vehicular ad hoc networks,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1218–1227, Jan. 2018.
    [18] B. Liu, W. Jiang, Z. Fang, D. Jia, S. Xiong, E. Wang, and J. Wang, “A novel safety message dissemination for region of interest coverage using vehicle trajectory,” in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1–5, Feb. 2020.
    [19] B. Wu, H. Shen, and K. Chen, “Exploiting active subareas for multicopy routing in VDTNs,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4374– 4388, Dec. 2018.
    [20] M. Laha and R. Datta, “Efficient message dissemination in V2V network: A local centrality-based approach,” in Proc. National Conference on Communications (NCC), pp. 1–6, Sep. 2021.
    [21] F. D. Cunha, G. G. Maia, A. C. Viana, R. A. Mini, L. A. Villas, and A. A. Loureiro, “Socially inspired data dissemination for vehicular ad hoc networks,” in Proc. ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ICMASWMS), pp. 81–85, Sep. 2014.
    [22] J. B. D. da Costa, A. M. de Souza, D. Rosário, E. Cerqueira, and L. A. Villas, “Efficient data dissemination protocol based on complex networks’ metrics for urban vehicular networks,” Journal of Internet Services and Applications, vol. 15, no. 10, Aug. 2019.
    [23] D. Chen, L. Lü, M.-S. Shang, Y.-C. Zhang, and T. Zhou, “Identifying influential nodes in complex networks,” Physica A: Statistical Mechanics and its Applications, vol. 391, no. 4, pp. 1777–1787, Feb. 2012.
    [24] S. Gao, J. Ma, Z. Chen, G. Wang, and C. Xing, “Ranking the spreading ability of nodes in complex networks based on local structure,” Physica A: Statistical Mechanics and its Applications, vol. 403, pp. 130–147, Jun. 2014.
    [25] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,” in Proc. ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Mar. 2008.
    [26] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and road traffic simulation for improved IVC analysis,” IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, Jul. 2011.
    [27] M. Behrisch, L. Bieker-Walz, J. Erdmann, and D. Krajzewicz, “SUMO - simulation of urban mobility: An overview,” vol. 2011, Oct. 2011.
    [28] L. Bedogni, M. Gramaglia, A. Vesco, M. Fiore, J. Härri, and F. Ferrero, “The bologna ringway dataset: Improving road network conversion in SUMO and validating urban mobility via navigation services,” IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5464–5476, Sep. 2015.

    無法下載圖示 全文公開日期 2026/02/14 (校內網路)
    全文公開日期 2026/02/14 (校外網路)
    全文公開日期 2026/02/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE