簡易檢索 / 詳目顯示

研究生: 蔡易伸
Yi-shen Tsai
論文名稱: 異質結構複晶矽/碳化矽薄膜電晶體設計之研究
Study of Heterostructure Poly-Si/SiC Thin-Film-Transistors Device Design
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 劉政光
Cheng-Kuang Liu
趙良君
Liang -Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 薄膜電晶體能矽異質結構
外文關鍵詞: bandgap
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於應用範圍非常的廣泛,複晶矽(polysilicon)薄膜電晶體(TFT)已經被研究很多年,例如記憶體、主動示液晶顯示器和數位相機等,原因是低溫複晶矽薄膜電晶體具有很高的電子移動率(field effect mobility)。然而,傳統的自我對準型(self-aligned)的複晶矽薄膜電晶體的電特性上卻存在了幾個不欲發生的效應,包括大的關閉狀態(off-state)的電流,紐結效應(kink effect)和熱載子引起電性操作上的不穩定性。為了改善元件特性,我們將分析使用了異質結構複晶矽/碳化矽(silicon carbide)的薄膜電晶體。
在本論文中,我們將經由模擬來探討異質結構薄膜電晶體,一開始會討論傳統型單一汲極/源極的複晶矽和碳化矽薄膜電晶體。我們發現由於碳化矽的能隙(bandgap)比矽大,複晶碳化矽薄膜電晶體可以有效抑制漏電流(leakage current),但同時也會增加啟始電壓(threshold voltage)。接著改變不同複晶矽和碳化矽的厚度,研究兩種材質的厚度對元件特性的影響。另外為了改善異質結構薄膜電晶體啟始電壓過大的缺點,也會試著改變通道的摻雜濃度。
最後我們會調整元件的通道長度和閘極(gate)氧化層厚度,由模擬結果可以發現當通道長度縮短或閘極氧化層厚度減少時,傳統型薄膜電晶體的漏電流會大量增加,而異質結構薄膜電晶體的漏電流只有少量的增多。


Polysilicon thin film transistors (poly-Si TFTs) have been investigated for their extensive applications on memory devices, active matrix liquid crystal displays (AMLCDs) and digital cameras. It’s because the electron mobility of ploy-Si TFTs is about 100 times larger than that of amorphous TFTs However, conventional self-aligned polysilicon TFTs present several undesired effects in the electrical characteristics, including large off-state currents (leakage), kink effect and hot carrier instabilities. In order to improve the electrical properties of poly-Si TFTs, the heterostructure Poly-Si/SiC TFTs are employed.
In this thesis, heterostructure TFTs were studied by simulation. The conventional single source/drain poly-Si and poly-SiC TFTs are discussed first. Because the bandgap of SiC is larger than that of Si, poly-SiC TFTs show low leakage current and high threshold voltage. Next, the thickness of poly-Si and ploy-SiC is changed to study its influence to device characteristics. In addition, the channel doping concentration is also changed for reducing the threshold voltage.
Finally, TFTs mentioned above of various channel length and gate oxide thickness is investigated. From the results of simulation, it’s found that the leakage current of poly-Si TFTs is increased strictly and the leakage current of heterostructure TFTs is increased slightly when the channel length and gate oxide thickness is decreased.

Abstract (Chinese)……………………………………………………………………i Abstract (English)……………………………………………………………………iii Acknowledgement (Chinese)……………………………………………………………v Contents…………………………………………………………………………………vi Table List………………………………………………………………………………viii Figure Captions…………………………………………………………………………ix Chapter 1 Introduction…………………………………………………………………1 1-1 Application of poly-Si TFTs……………………………………………………1 1-2 Background……………………………………………………………………………1 1-3 Electrical Characteristics of Poly-Si TFTs…………………………………3 1-4 Motivation……………………………………………………………………………5 1-5 Thesis organization…………………………………………………………………6 Chapter 2 Device scheme…………………………………………………………………9 Chapter 3 Results and discussion……………………………………………………12 3-1 Influence of poly-Si and poly-SiC thickness and channel doping concentration……………………………………………………………………………12 3-1-1 Poly-Si and poly-SiC TFTs……………………………………………………12 3-1-2 Influence of different poly-SiC thickness………………………………12 3-1-3 Influence of different poly-Si thickness…………………………………13 3-1-4 Influence of channel doping concentration………………………………14 3-2 Influence of channel length and gate oxide thickness……………………28 3-2-1 Influence of channel length…………………………………………………28 3-2-2 Influence of gate oxide thickness…………………………………………29 3-3 Comparison with TFTs mentioned above…………………………………………50 Chapter 4 Conclusions…………………………………………………………………60 Reference…………………………………………………………………………………62 Vita…………………………………………………………………………………………67

[1]. Y. Matsueda, T. Ozawa, M. Kimura, T. Itoh, K. Kitwada, T. Nakazawa, and H. Ohsima, “A 6-bit-color VGA low-temperature poly-Si TFT-LCD with integrated digital data drivers,” in SID Tech. Dig., pp. 879-882, 1998.
[2]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” in IEDM Tech. Dig., pp.157, 1989.
[3]. 工業材料-光電特刊, Vol. 199, 2003年7月.
[4]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “ Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, Vol. 48, pp. 845-851, 2001.
[5]. Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED displays – technology and performance,” in IEDM Tech. Dig., pp. 871-874, 1998.
[6]. H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., pp.38, 1992.
[7]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313, 1995.
[8]. A.Sato, Y. Momiyama, Y. Nara, T. Sugii, Y. Arimoto, T. Ito, “A 0.5-μm EEPROM cell using poly-Si TFT technology,” IEEE Trans. Electron Devices, Vol.40, pp. 2126, 1993.
[9]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[10]. T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5, pp. 1086-1039, 1991.
[11]. Y. Hayashi, H. Hayashi, M. Negishi and T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference, pp.266, 1998.
[12]. N. Yamauchi, Y. Inaba and M.Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonics Tech. Lett., Vol. 5, No. 3, 1993.
[13]. M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proc. Circuits Device Syst., Vol. 141, No. 1, 1994.
[14]. Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, and Krishna C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, Vol. 89, pp. 602-633, 2001.
[15]. Y. Akasaka, “ Three-Dimensional IC trends,” Proceedings of the IEEE, Vol.74, No. 12, pp. 1703-1714, 1986.
[16]. I-W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19-22, 1995.
[17]. W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, Vol. 33, pp. 477-481, 1986.
[18]. M. Takabatake, J. Ohwada, Y. A. Ono, K. Ono, A. Mimura, and N. Konishi, “CMOS circuits for peripheral circuit integrated poly-Si TFT LCD fabricated at low temperature below 600 °C,” IEEE Trans. Electron Devices, Vol. 38, pp. 1303-1309, 1991.
[19]. John Y. W. Seto, “ The electrical properties of polycrystalline silicon film,” J. Appl. Phy., Vol.46, No. 12, pp. 5247-5254, 1975.
[20]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “ Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phy., Vol. 53, No. 2, pp. 1193-1202, 1982.
[21]. S. D. Brotherton, J.R. Ayres, and N. D. Young, “ Characterisation of Low Temperature Poly-Si Thin Film Transistors,” Solid-State Electronics, Vol. 34, No. 7, pp. 671-679, 1991.
[22]. I.-Wei Wu, Alan G. Lewis, Tiao-Yuan Huang, Warren B. Jackson, and Anne Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” in IEDM Tech. Dig., pp. 867-870, 1990.
[23]. K. R. Olasupo, and M. K. Hatalis, “Leakage current mechanism in sub- micron polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 43, pp. 1218-1223, 1996.
[24]. M. Lack, I-W. Wu, T. J. King, and A. G. Lewis, “Analysis of leakage currents in poly-silicon thin film transistors,” in IEDM Tech. Dig., pp. 385-388, 1993.
[25]. Jerry G. Fossum, Adelmo Ortiz-conde, Hisashi Shichijo, and Sanjay K. Banerjee, “Anomalous Leakage Current in LPCVD Polysilicon MOSFET’s,” IEEE Trans. Electron Devices, Vol. 32, No. 9, pp. 1878-1884, 1985.
[26]. M. Yazaki, S. Takenaka, and H. Ohshima, “Conduction Mechanism of Leakage Current Observed in Metal-Oxide-Semiconductor Transistors and Poly-Si Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 31, pp. 206-209, 1992.
[27]. Bohuslav Rezek, Christoph E. Nebel, and Martin Stutzmann, “Polycrystalline silicon thin films produced by interference laser crystallization of amorphous silicon,” Jpn. J. Appl. Phys., Part 2, Vol. 38, pp. L1083-L1084, 1999.
[28]. P. M. Smith, P. G. Carey, and T. W. Sigmon, “Excimer laser crystallization and doping of silicon films on plastic substrates,” Appl. Phys. Lett., Vol. 70, pp. 342-344, 1997.
[29]. James S. Im, H. J. Kim, and Michael O. Thompson, “Phase transformation mechanisms involved on excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., Vol. 63, pp. 1969-1971, 1993.
[30]. Yunosuke Kawazu, Hiroshi Kudo, Seinosuke Onari, and Toshihiro Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys. Part1, Vol. 29, pp. 2698-2704, 1990.
[31]. K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystalline silicon thin- film transistors,” IEEE Electron Device Lett., Vol. 9, pp. 23-25, 1988.
[32]. Byung-Hyuk Min and Jerzy Kanicki, “Electrical characteristics of new LDD poly-Si TFT structure tolerant to process misalignment,” IEEE Electron Device Lett., Vol. 20, pp. 335-337, 1999.
[33]. Yasuyoshi Mishima and Yoshiki Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, Vol. 49, pp. 981-985, 2002.
[34]. M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig., 1997, pp. 523-526.
[35]. Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, “Gate-overlapped lightly doped drain poly-Si thin- film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, Vol. 45, pp. 1272-1279, 1998.
[36]. Ted Kamins, Polycrystalline silicon for integrated circuits and displays, second edition.
[37]. M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., Vol. 12, pp. 203-205, 1991.
[38]. M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 44, pp. 2234-2241, 1997.
[39]. M. Koyanagy, H. Kaneko, and S. Shimizu, “ Optimum design of n+-n– double-diffused drain MOSFET to reduce hot-carrier emission,” IEEE Trans. Electron Devices, Vol. 32, pp. 562, 1985.
[40]. F.-C Hsu, and H. R. Grinolds, “Structure-enhanced MOSFET degradation due to hot-electron injection,” IEEE Electron Device Lett., Vol. 5, No. 3, pp. 71-74, 1984.
[41]. J. Hui, F.-C Hsu, and J. Moll, “ A new substrate and gate current phenomenon in short-channel LDD and minimum overlap devices,” IEEE Electron Device Lett., Vol. 6, pp. 135, 1985.
[42]. Tiao-yuan Huang, William W. Yao, Russel A. Martin, Alan G. Lewis, Mitsumasa Koyanai, and John Y. Chen, “ A novel submicron LDD transistor with inverse-T gate structure,” in IEDM Tech. Dig., pp. 742-745, 1986.
[43]. T. Hori, and K. Kurimoto, “A new MOSFET with large-tilt-angle implanted drain (LATID) structure,” IEEE Electron Device Lett., Vol.9, No.6, pp.300-302, 1988.
[44]. T. Hori, J. Hirase, Y. Odake, and T. Yasui, “Deep-submicrometer large-angle-tilt implanted drain (LATID) technology,” IEEE Trans. Electron Devices, vol. 39, No. 10, pp. 2312-2324, 1992.
[45]. T. Hori, “0.25μm LATID (LArge-Tilt-angle Implanted Drain) technology for 3.3-V operation,” in IEDM Tech. Dig., pp. 777-780, 1989.
[46]. J. Hirase, T. Hori, and Y. Odake, “LATID (Large-Angle-Tilt Implanted Drain) FETs with buried n– profile for deep-submicron ULSIs,” IEICE Trans. Electron., Vol. 77-C, No. 3, pp. 350-354, 1994.

無法下載圖示 全文公開日期 2012/06/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE