簡易檢索 / 詳目顯示

研究生: 楊證民
Cheng-min Yang
論文名稱: 提升超音波精密加工之變幅桿穩定度研究
Investigation of stability enhancement the horn for application in ultrasonic precise machining
指導教授: 周振嘉
Chen-chia Chou
口試委員: 徐茂濱
Mau-pin Hsu
蘇裕軒
Yu-hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 超音波加工變幅桿有限元素法
外文關鍵詞: ultrasonic machining, horn, finite element method
相關次數: 點閱:320下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般認為超音波加工相較於雷射加工、放電加工…等,是精度較差的加工法。但是超音波加工有重複性高與易加工脆性材料之優點。因此,若要發展超音波應用於高精度且高穩定之切削,不只要有穩定的共振頻率及振動位移,還要考慮整體系統的穩定性,以達到精密之需求。其中,變幅桿所產生的振動變化都會直接影響到加工品質與精度大小。是故,本研究將搭配有限元素分析,從中取代業界在設計上常用的實驗試誤法,並利用實驗驗證,探討不同形狀與不同材質時的振動行為對於變幅桿穩定性影響,探討變幅桿接合時易產生的不穩定因素。
    我們設計鋁合金為變幅桿的主要材質,其具有高韌性;但是為了增加變幅桿的可替換性,在不同材質介面處的接合,會因為材料波傳特性不同而產生最大振幅的位移下降及負載電流上升;在不同形狀方面,會因截面積的縮小變化,其位移會上升;而變幅桿接合刀具或是換能器時,其接合界面越多越不穩定。實驗中嘗試使用不同的接合力矩,得到接合力矩約36N-m時有助於增強介面的接合,使波的傳遞穩定。且我們利用脈衝波速量測儀與密度試驗所得到的材料參數輸入到有限元素分析中,其有限元素分析與實際驗證誤差在0.3%之內,分析準確性高。
    超音波加工法中,常需要透過變幅桿來放大振幅,但大部分有錐度之變幅桿設計,使得加工面積被侷限,所以為了達到大範圍的加工,就需要製作大面積變幅桿。因此,本實驗模擬了數種不同形狀之變幅桿,但變幅桿邊長超過1/4波長時,即會產生振幅不均之現象,所以研究利用複合式切槽法來克服振幅不均的問題。
    實驗結果顯示,變幅桿邊長越長時,其端面振動位移會因離中心位置越遠,其振動位移會越小,若設計固定面積尺寸為60mm×20mm來實驗。從模擬中可看出在未改善前振幅不均達40%,而分別加入單切槽、雙切槽或雙切邊時,其振幅可改善至20%內,若使用複合式切槽法時,振幅可改善至10%內。而實際實驗使用800瓦功率透過複合式切槽法,經由量測驗證方形變幅桿振幅改善不均勻至2%。


    The Ultrasonic Machining is a less precise processing method than other conventional processing methods. That is because technical problem appear on the application of ultrasonic machining, such as the resonant frequency, displacement and the vibration of the horn that would influence micrometer-level cutting of ultrasonic machining. In this research, we used the finite element method to analyze some factors and demonstrate the simulations. Some factors were analyzed in the simulations, are including observation of different geometries and different materials of horns; simulation of the interface behaviors of horn, transducer and tool, while the waves conducted between them. The result of the simulation would be compared to experiment result. We hope the result of this research could give some contribution for developing the high precision and high stability of the ultrasonic machining.
    The results reveal that the material’s data, which were got by pulse wave velocity measurement system and were analyzed by finite element method, show 0.3% deviation compare to experiment. Furthermore, the transducers are aluminum alloy. If we connect with other horns to increase the strength, the different materials of horn and transducer would create the decline of displacement and ascendant current load; if the horns have different shapes, the decrease of the cross-sectional area of horns will increase the displacement distance; the more interface of transducer, horn and tools will introduce unstable phenomena. Lastly, the connective strength about 36N-m of transducer and horn would generate the stability frequency of wave’s transmission.
    Furthermore, the non-uniform amplitudes of the large volume horn were detail discussed. The experiments simulate several shapes of the horn. When the volume horn is over than 1/4 waves, the horn creates the non-uniform amplitudes phenomena. Then the Composite grooving method is used to overcome the non-uniform amplitudes phenomena.
    We design the 60mm×20mm volume horn, the results reveal that the amplitudes have about 40% irregularities. If we used single notch, double notch and dual trimming of the horn to improve the amplitudes, it just decreased less than 20% irregularities. Lastly, we used composite grooving method which reveals the best results of 10% irregularities. The experiment results demonstrated that using composite grooving method on the large volume of square horn, reveals the best uniformity of the horn.

    中文摘要 …………………………………………………………………………… I Abstract ……………………………………………………………………………… II 致謝 ……………………………………………………………………………… IV 目錄 ……………………………………………………………………………… VI 圖目錄 …………………………………………………………………………… IX 表目錄 …………………………………………………………………………… XIII 第一章 緒論………………………………………………………………………… 1 1.1 文獻回顧…………………………………………………………………… 2 1.1.1 超音波的發展歷史………………………………………………… 2 1.1.2 超音波加工應用…………………………………………………… 2 1.1.3 超音波變幅桿設計………………………………………………… 3 1.2 研究動機與目的…………………………………………………………… 4 第二章 基本原理與理論…………………………………………………………… 6 2.1 超音波加工………………………………………………………………… 6 2.1.1 超音波加工原理與特性…………………………………………… 6 2.1.2 超音波加工系統…………………………………………………… 7 2.2 波的種類………………………………………………………………… 12 2.2.1 波動方程式…………………………………………………………14 2.2.2 波的性質……………………………………………………………16 2.3 傅立葉基本概念與分析………………………………………………… 18 2.3.1 傅立葉轉換…………………………………………………………18 2.3.2 快速傅立葉轉換取樣………………………………………………20 2.3.3 快速傅立葉轉換之假象……………………………………………21 2.4 ANSYS結構振動分析…………………………………………………… 23 2.4.1 有限元素法簡介……………………………………………………23 2.4.2 ANSYS簡介…………………………………………………………23 2.4.3 模態分析……………………………………………………………29 第三章 實驗方法與設備……………………………………………………………31 3.1 研究材料之選擇………………………………………………………… 31 3.2 頻率量測………………………………………………………………… 32 3.3 非接觸式光纖位移量測………………………………………………… 33 3.3.1 光纖位移量測簡介…………………………………………………33 3.3.2光纖位移量測系統…………………………………………………34 3.4 脈衝式波速量測儀……………………………………………………… 35 3.5 拉伸試驗………………………………………………………………… 36 3.6 密度量測………………………………………………………………… 38 3.7 ANSYS有限元素分析………………………………………………… 39 第四章 實驗研究與結果……………………………………………………………40 4.1 不同試驗方法對數值模擬之影響……………………………………… 40 4.2 不同參數對變幅桿設計之穩定度探討………………………………… 44 4.2.1 不同形狀對共振頻率與負載電流之影響…………………………44 4.2.2 不同共振長度對位移與負載電流之影響…………………………49 4.2.3 不同材料對共振頻率與負載電流之影響…………………………52 4.2.4 鎖緊程度對振動位移穩定之影響…………………………………54 4.3 變幅桿與刀具接合之影響……………………………………………… 57 4.3.1 相同材料之刀具接合………………………………………………57 4.3.2 不同材料之刀具接合………………………………………………60 4.4 大面積變幅桿對於振幅不均之探討…………………………………… 62 4-4-1 切槽對變幅桿頻率與端面振幅之影響………………………… 66 4-4-2複合式切法對變幅桿頻率與端面振幅之影響……………………69 第五章 結論…………………………………………………………………………72 參考文獻……………………………………………………………………………73 附錄一 超音波加工機改良設計 ………………………………………………… 76

    1.H. Kuttruff, “Ultrasonics fundamentals and applications”, Elsevier Applied Science, 1991, pp3-5.
    2.P.D. Edmonds, “Ultrasonics” , Academic Press, 1981, pp.3-5.
    3.L. Rayleigh, “The Theory of Sound”, 1st Am. Ed., Vols. 1 and 2, Dover, New York, 1945.
    4.J. P. Joule, “Phil Mag.”,[III], 1847, pp30-76.
    5.J. Curie, P. Curie, Compt. “Rend. Acad. Sci.”, Paris, 1880, pp91-294.
    6.R. W. Wood, Loomis,“The Physical and Biological Effects of High Frequence Sound Waves of Great Intensit”, Philosophical Magazine, 1927, Vol. 7, pp. 417-436.
    7.H. Dam, P. Qusit, M. P. Schreiber, “Productivity, surface quality and tolerances in ultrasonic machining of ceramics”, Journal of Materials Processing Technology, 1995, Vol. 51, pp. 358-368.
    8.G. Sinn, B. Zettl, H. Mayer, S. S. Tschegg, “Ultrasonic-assisted cutting of wood”, Journal of Materials Processing Technology, 2005, Vol. 170, pp. 42-49.
    9.D. Jianxin, L. Taichiu, “Surface integrity in electro-discharge machining, ultrasonic machining, and diamond saw cutting of ceramic composites”, Ceramics International, 2000, Vol. 226, pp.825-830.
    10.J. P. Choi, B. H. Jeon, B. H. Kim, “Chemical-assisted ultrasonic machining of glass”, Journal of Materials Processing Technology, 2007, Vol. 191, pp.153-156.
    11.Y. Ichida, R. Sato, Y. Morimoto, K. Kobayashi, “Material removal mechanisms in non-contact ultrasonic abrasive machining”, Wear, 2005, Vol. 258, pp.107-114.
    12.S. G. Amin, M. H. M. Ahmed, H. A. Youssef,“Computer-Aided Design of Acoustic Horns for Ultrasonic Machining Using Finite-Element Analysis”, Journal of Materials Processing Technology, 1995, Vol. 55, pp. 254-260.
    13.G. Zhou, “The Performance and Design of Ultrasonic Vibration System for Flexural Mode”, Ultrasonics, 2000, Vol. 37, pp. 979-984.
    14.K. H. W. Seah, Y. S. Wong, L. C. Lee, “Design of tool holders for ultrasonic machining using FEM”, Journal of Materials Processing Technology, 1993, Vol. 37, pp. 801-816.
    15.K. Adachi, S. Ueha, “Modal vibration control of large ultrasonic tools with the use of wave-trapped horns”, Acoustical Society of America, 1990, Vol. 87, pp. 208-214.
    16.A. Cardoni, M. Lucas, “Enhanced vibration performance of ultrasonic block horns”, Ultrasonics, 2002, Vol. 40, pp. 365-369.
    17.A. Cardoni, M. Lucas, M. Cartmell, F. Lim, “A novel multiple blade ultrasonic cutting device”, Ultrasonics, 2004, Vol. 42, pp. 69-74.
    18.劉恩廷,“運用超音波於硬脆材料之精密加工之發展與評估”, 國立台灣科技大學機械工程系碩士論文, 2009.
    19.J. N. Petzing and J. R. Tyrer, “Analysis of Power Ultrasonic Components Using Shearing Interferometry”, Optics and Lasers in Engineering, 1997, Vol. 26, pp. 235~248, 1997.
    20.G. Graham, J. N. Petzing, M. Lucas, “Modal Analysis of Ultrasonic Block Horns by ESPI”, Ultrasonics, 1999, Vol. 37, pp. 149-157.
    21.G. Graham, J. N. Petzing, M. Lucas, “Extracting Modal Parameters of Ultrasonic Bar Horns from ESPI FRF Data”, Ultrasonics, 1999, Vol. 37, pp. 231-238.
    22.許坤明, “非傳統加工”, 全華科技圖書有限公司, 2005.
    23.蔡國隆, 王光賢, 涂聰賢, “聲學原理與噪音量測控制”, 全華科技圖書有限公司, 2005.
    24.賴耿陽, “超音波工學理論與實務”, 復漢出版社, 2001.
    25.T. B. Thoe, D. K. Aspinwall, M.L.H. Wise, “Review on ultrasonic machining”, International Journal of Machine Tools and Manufacture, 1998, Vol. 38(4), pp. 239-255.
    26.M. Lucas, G. Graham, A. C. Smith, “Enhanced vibration control of an ultrasonic cutting process”, Ultrasonics, 1996, Vol. 34, pp. 205-211.
    27.E. A. Neppiras, “Very high energy ultrasonic”, British Journal of Applied Physics, 1960, Vol. 11, pp. 143-150.
    28.陳精一, “ANSYS振動學實務分析”, 高立圖書有限公司, 2005.
    29.ANSYS 11.0 HTML Online Documentation-Structural Analysis Guide. Modal Analysis.
    30.材料特性資料庫:http://www.matweb.com/
    31.張嘉芳, 木質材料之超音波傳遞速度與其性質, 國立屏東科技大學木材工業系碩士論文, 2004.
    32.倪君耀, 覆晶鍵合超音波工具投設計與量測之研究, 國立清華大學動力工程學系碩士論文, 2006.
    33.陳聖平, 複雜外型超音波放大器之有限元素分析與最佳化設計, 國立交通大學機械工程學系碩士論文, 2010.
    34.洪榮崇, 超音波振動於鋁合金成形加工的摩擦效應研究, 國立交通大學機械工程研究所博士論文, 2006.

    無法下載圖示 全文公開日期 2016/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE