簡易檢索 / 詳目顯示

研究生: Zekarias Yeabiyo
Zekarias Yeabiyo
論文名稱: 使用人工神經網路之動態電壓恢復器於敏感性負載電力品質之研究
Power Quality Improvement in Sensitive Load Using Dynamic Voltage Restorer with ANN
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 陳柏宏
Po-Hung Chen
李俊耀
Chun-Yao Lee
郭政謙
Cheng-Chien Kuo
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 77
中文關鍵詞: 諧波總諧波失真電壓驟降/電壓驟升動態電壓恢復器人工神經網路彈性交流輸電系統
外文關鍵詞: Harmonics, THD, Sag/Swell, Dynamic Voltage Restorer, ANN, FACTS
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
儘管科技日新月異,使得電力品質相關研究始終為電力系統安全運轉之重要議題。且於現今電力系統中,大量再生能源併入電網、智慧電網高速發展以及電力電子設備的大量使用導致了許多電力品質問題。其中電壓及電流諧波、電壓驟降與驟升等皆會對敏感性負載造成影響,而當系統電壓改變時亦會導致敏感性負載受到影響甚至毀壞。綜上所述,電力品質問題對於電力系統可靠性與安全運轉至關重要。因此為提高具有非線性與敏感性負載之配電系統運轉效率,本文提出基於人工神經網路及PI控制之動態電壓恢復器(DVR)。DVR為一分散式彈性交流輸電系統設備,用於解決因電壓、電流或頻率不穩定導致之電網問題。以提高電壓之方式保持配電網中電壓之穩定度,是解決電力品質問題中效益最高之方式。
本文使用MATLAB/Simulink軟體進行模擬,並驗證所提出DVR技術於改善因諧波導致電壓失真之可行性。使用具有可程式電源之電力系統模型以緩解電壓驟降、驟升、3階及5階諧波。並評估具有DVR與不具有DVR之可程式電源之電力系統模型對負載電壓之響應。而本文亦使用人工神經網路調整電壓信號之d-q軸及DVR中之電壓源轉換器(VSI)之絕緣閘極雙極性電晶體(IGBT)脈衝信號。加入兩個PI控制器並透過DVR-VSI脈衝於不同操作狀況下之負載電壓管理,並將蒐集之負載電壓數據提供人工神經網路(ANN)之模型訓練輸入/輸出。當電壓訊號分別存在3階及5階諧波時,其總諧波失真率(THD)分別為25%及36%,而在本文研究中,使用基於人工神經網路之DVR時可成功將上述之情形之總諧波失真率降低至2%以下。


Abstract
Power quality is an important topic in today’s power system that can have an impact on consumers and utilities. The integration of renewable energy sources, smart grid technologies, and extensive use of power electronics equipment in the recent electric power system causes a massive of problems. Harmonics in current and voltage, voltage sag, and swell can all affect sensitive loads. Interference with other elements of the system can cause input voltage variations, making these devices vulnerable. As a result, in the present day, with the expansion of sensitive and expensive electronic equipment, power quality is critical for the reliable and safe operation of the power system. To improve the performance of a distribution power system, which contains non-linear and sensitive load, this paper offers an Artificial Neural Network (ANN) and PI controllers for a Dynamic Voltage Restorer (DVR). The DVR is a prospective Distribution Flexible AC Transmission System (D-FACTS) device that is frequently used to solve difficulties in the distribution grid caused by non-standard voltage, current, or frequency. It injects voltages via the injection transformer into the distribution line to keep the voltage profile and the load voltage constant. The DVR is the most cost-effective way to solve voltage-related PQ issues.
The simulations were run in MATLAB/Simulink to demonstrate the effectiveness of the DVR-based proposed technique in smoothing the distorted voltage caused by harmonics. To accommodate voltage sag, swell, 3rd and 5th harmonics, a power system model with a programmable power source was used. The response of the systems to load voltage is assessed in both DVR and non-DVR scenarios. The suggested DVR-based controller was found to be successful in managing voltage distortion and achieving a smooth compensated load voltage.
Two ANNs are applied to regulate the D-Q axes voltage signals and adjust the IGBT pulses of the voltage source inverter (VSI) used to operate DVR. Two PI controllers also, introduced for managing the load voltage by DVR-VSI pulses at distinct abnormal operation circumstances, provide the input/output data necessary to train ANNs. With insertion 3rd and 5th harmonics in the supply voltage, the load voltage THD percentage was around 25% and 36%, respectively. THD was decreased by less than 2% in both cases when the suggested DVR based ANN was included. So the system performance with the proposed ANN-DVR controller is enhanced.

Table of contents Abstract i 中文摘要 iii Acknowledgments iv List of figures vii List of tables ix Abbreviations x Chapter 1: Introduction 1 1.1. Background 1 1.2. Study Motivation 6 1.3. Objectives of this study 6 1.4. Thesis Organization 7 Chapter 2: Literature Review 8 2.1. About Power Quality 8 2.2. Harmonics Analysis 9 2.2.1. Current Harmonics 10 2.2.2. Voltage Harmonics 10 2.2.3. Total Demand Distortion (TDD) 11 2.2.4. Effects of Harmonics in Power Systems 11 2.3. Voltage Sag/Swell 12 2.4. DVR Topologies and Operations 14 2.4.1. DVR Topologies 14 2.5. Modes of DVR Operations 16 2.5.1. Protection Mode 16 2.5.2. Standby Mode 17 2.5.3. Injection or Active Mode 17 2.6. Compensation Techniques of DVR 17 2.6.1. In-Phase Compensation 17 2.6.2. Pre-sag Compensation 18 2.7. LC filter Replacement 18 Chapter 3: Methodologies 19 3.1. About DVR Configurations 21 3.2. Components of DVR 23 3.4. Control Strategy Algorithm of DVR 27 3.4.1. PI Controller Algorithm (SRF-based) 27 3.4.2 ANN Controller Algorithm (Levenberge-Marquardt) 31 Chapter 4: Simulation Results and Discussions 38 4.1. Case I: Balanced voltage sag 38 4.2. Case II: Unbalanced voltage sag 39 4.3. Case III: Balanced voltage swell 40 4.4. Case IV: Three-phase short circuit fault (LLL-G) 41 4.5. Case V: Harmonics 44 Chapter 5: Conclusions and Future Work 55 5.1. Conclusion 55 5.2. Future Works 56 References 57

References
[1] A. Benali, M. Khiat, T. Allaoui, and M. Denaï, “Power Quality Improvement and Low Voltage Ride Through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer,” IEEE Access, vol. 6, pp. 68634–68648, 2018, doi: 10.1109/ACCESS.2018.2878493.
[2] W. S. Hassanein, M. M. Ahmed, M. Osama abed el-Raouf, M. G. Ashmawy, and M. I. Mosaad, “Performance improvement of off-grid hybrid renewable energy system using dynamic voltage restorer,” Alexandria Eng. J., vol. 59, no. 3, pp. 1567–1581, 2020, doi: 10.1016/j.aej.2020.03.037.
[3] N. Abas, S. Dilshad, A. Khalid, M. S. Saleem, and N. Khan, “Power quality improvement using dynamic voltage restorer,” IEEE Access, vol. 8, pp. 164325–164339, 2020, doi: 10.1109/ACCESS.2020.3022477.
[4] K. Chandrasekaran and V. K. Ramachandaramurthy, “An improved Dynamic Voltage Restorer for power quality improvement,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 354–362, 2016, doi: 10.1016/j.ijepes.2016.02.036.
[5] J. Kaushal and P. Basak, “Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using artificial neural network in PV integrated AC microgrid,” Sustain. Energy, Grids Networks, vol. 23, p. 100365, 2020, doi: 10.1016/j.segan.2020.100365.
[6] A. M. Saeed, S. H. E. Abdel Aleem, A. M. Ibrahim, M. E. Balci, and E. E. A. El-Zahab, “Power conditioning using dynamic voltage restorers under different voltage sag types,” J. Adv. Res., vol. 7, no. 1, pp. 95–103, 2016, doi: 10.1016/j.jare.2015.03.001.
[7] E. M. Molla and C. C. Kuo, “Voltage Sag Enhancement of Grid Connected Hybrid PV-Wind Power System Using Battery and SMES Based Dynamic Voltage Restorer,” IEEE Access, vol. 8, pp. 130003–130013, 2020, doi: 10.1109/ACCESS.2020.3009420.
[8] Z. Elkady, N. Abdel-Rahim, A. A. Mansour, and F. M. Bendary, “Enhanced DVR control system based on the harris hawks optimization algorithm,” IEEE Access, vol. 8, pp. 177721–177733, 2020, doi: 10.1109/ACCESS.2020.3024733.
[9] P. Thakur, “Load Distribution and VFD Topology Selection for Harmonic Mitigation in an Optimal Way,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 48–56, 2020, doi: 10.1109/TIA.2019.2946111.
[10] A. F. Bastos, K. W. Lao, G. Todeschini, and S. Santoso, “Accurate Identification of Point-on-Wave Inception and Recovery Instants of Voltage Sags and Swells,” IEEE Trans. Power Deliv., vol. 34, no. 2, pp. 551–560, 2019, doi: 10.1109/TPWRD.2018.2876682.
[11] J. Liao, N. Zhou, and Q. Wang, “DC-side harmonic analysis and DC filter design in hybrid HVDC transmission systems,” Int. J. Electr. Power Energy Syst., vol. 113, no. March, pp. 861–873, 2019, doi: 10.1016/j.ijepes.2019.06.013.
[12] M. Farhadi-Kangarlu, E. Babaei, and F. Blaabjerg, “A comprehensive review of dynamic voltage restorers,” Int. J. Electr. Power Energy Syst., vol. 92, pp. 136–155, 2017, doi: 10.1016/j.ijepes.2017.04.013.
[13] S. K. Dash and P. K. Ray, “A New PV-Open-UPQC Configuration for Voltage Sensitive Loads Utilizing Novel Adaptive Controllers,” IEEE Trans. Ind. Informatics, vol. 17, no. 1, pp. 421–429, 2021, doi: 10.1109/TII.2020.2986308.
[14] T. Kandil and M. Adel Ahmed, “Control and Operation of Dynamic Voltage Restorer with Online Regulated DC-Link Capacitor in Microgrid System,” Can. J. Electr. Comput. Eng., vol. 43, no. 4, pp. 331–341, 2020, doi: 10.1109/CJECE.2020.3002855.
[15] N. Kassarwani, J. Ohri, and A. Singh, “Performance analysis of dynamic voltage restorer using improved PSO technique,” Int. J. Electron., vol. 106, no. 2, pp. 212–236, 2019, doi: 10.1080/00207217.2018.1519859.
[16] A. Moghassemi, S. Padmanaban, V. K. Ramachandaramurthy, M. Mitolo, and M. Benbouzid, “A Novel Solar Photovoltaic Fed TransZSI-DVR for Power Quality Improvement of Grid-Connected PV Systems,” IEEE Access, vol. 9, pp. 7263–7279, 2021, doi: 10.1109/ACCESS.2020.3048022.
[17] A. Çiçek, A. K. Erenoğlu, O. Erdinç, A. Bozkurt, A. Taşcıkaraoğlu, and J. P. S. Catalão, “Implementing a demand side management strategy for harmonics mitigation in a smart home using real measurements of household appliances,” Int. J. Electr. Power Energy Syst., vol. 125, no. December 2019, 2021, doi: 10.1016/j.ijepes.2020.106528.
[18] M. Farbis, A. H. Hoevenaars, and J. L. Greenwald, “Oil field retrofit of ESPs to meet harmonic compliance,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 718–728, 2016, doi: 10.1109/TIA.2015.2481358.
[19] A. Rini Ann Jerin, N. Prabaharan, K. Palanisamy, and S. Umashankar, “FRT Capability in DFIG based Wind Turbines using DVR with Combined Feed-Forward and Feed-Back Control,” Energy Procedia, vol. 138, pp. 1184–1189, 2017, doi: 10.1016/j.egypro.2017.10.233.
[20] A. V. Khergade, R. J. Satputaley, V. B. Borghate, and B. V. S. Raghava, “Harmonics Reduction of Adjustable Speed Drive Using Transistor Clamped H-Bridge Inverter Based DVR with Enhanced Capacitor Voltage Balancing,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6744–6755, 2020, doi: 10.1109/TIA.2020.3013823.
[21] S. Priyavarthini, C. Nagamani, G. S. Ilango, and M. A. A. Rani, “An improved control for simultaneous sag/swell mitigation and reactive power support in a grid-connected wind farm with DVR,” Int. J. Electr. Power Energy Syst., vol. 101, no. March, pp. 38–49, 2018, doi: 10.1016/j.ijepes.2018.03.016.
[22] D. Somayajula and M. L. Crow, “An Integrated Dynamic Voltage Restorer-Ultracapacitor Design for Improving Power Quality of the Distribution Grid,” IEEE Trans. Sustain. Energy, vol. 6, no. 2, pp. 616–624, 2015, doi: 10.1109/TSTE.2015.2402221.
[23] M. I. Mosaad, M. O. Abed El-Raouf, M. A. Al-Ahmar, and F. M. Bendary, “Optimal PI controller of DVR to enhance the performance of hybrid power system feeding a remote area in Egypt,” Sustain. Cities Soc., vol. 47, no. February, p. 101469, 2019, doi: 10.1016/j.scs.2019.101469.
[24] D. Sangeeta Sarali, V. Agnes Idhaya Selvi, and K. Pandiyan, “Modeling of the three-phase converter using a predictive controller based on the dynamic voltage restorer model for improving power quality,” Mater. Today Proc., no. xxxx, pp. 1–8, 2021, doi: 10.1016/j.matpr.2021.01.744.
[25] S. S. Rangarajan, E. R. Collins, and J. C. Fox, “Efficacy of a Smart Photovoltaic inverter as a virtual detuner for mitigating Network Harmonic Resonance in Distribution Systems,” Electr. Power Syst. Res., vol. 171, no. January, pp. 175–184, 2019, doi: 10.1016/j.epsr.2019.02.001.
[26] S. Jayalath and M. Hanif, “An LCL-Filter Design with Optimum Total Inductance and Capacitance,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6687–6698, 2018, doi: 10.1109/TPEL.2017.2754100.
[27] R. Hemalatha and M. Ramasamy, “Microprocessor and PI controller based three phase CHBMLI based DSTATCOM for THD mitigation using hybrid control techniques,” Microprocess. Microsyst., vol. 76, 2020, doi: 10.1016/j.micpro.2020.103093.
[28] P. Dey and S. Mekhilef, “Current harmonics compensation with threephase four-wire shunt hybrid active power filter based on modified D-Q theory,” IET Power Electron., vol. 8, no. 11, pp. 2265–2280, 2015, doi: 10.1049/iet-pel.2014.0635.
[29] A. A. Hossam-Eldin, E. Negm Abdallah, M. S. Elgamal, and K. M. Aboras, “Fault ride-through of grid-connected THIPWM fired DCMLI-based DFIG using parallel switched feedback-controlled DVR,” IET Gener. Transm. Distrib., vol. 14, no. 6, pp. 945–954, 2020, doi: 10.1049/iet-gtd.2019.0215.
[30] D. C. Bhonsle and R. B. Kelkar, “Analyzing power quality issues in electric arc furnace by modeling,” Energy, vol. 115, pp. 830–839, 2016, doi: 10.1016/j.energy.2016.09.043.
[31] A. Sivakumar and N. B. Muthu Selvan, “Reduction of source current harmonics in ANN controlled induction motor,” Alexandria Eng. J., vol. 57, no. 3, pp. 1489–1499, 2018, doi: 10.1016/j.aej.2017.03.048.
[32] K. Elyaalaoui, M. Ouassaid, and M. Cherkaoui, “Improvement of THD performance of a robust controller for grid-side energy conversion system based on LCL filter without RC sensor,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, p. 106143, 2020, doi: 10.1016/j.ijepes.2020.106143.
[33] P. T. Ogunboyo, R. Tiako, I. E. Davidson, P. T. Ogunboyo, and R. Tiako, “Effectiveness of Dynamic Voltage Restorer for Unbalance Voltage Mitigation and Voltage Profile Improvement in Secondary Distribution System Efficacité du restaurateur de tension dynamique pour l’atténuation du déséquilibre de tension et du profil de tensi,” Can. J. Electr. Comput. Eng., vol. 41, no. 2, pp. 105–115, 2018, [Online]. Available: http://ieeexplore.ieee.org.
[34] A. P. Torres, P. Roncero-Sanchez, and V. F. Batlle, “A Two Degrees of Freedom Resonant Control Scheme for Voltage-Sag Compensation in Dynamic Voltage Restorers,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4852–4867, 2018, doi: 10.1109/TPEL.2017.2727488.
[35] M. Danbumrungtrakul, T. Saengsuwan, and P. Srithorn, “Evaluation of DVR Capability Enhancement-Zero Active Power Tracking Technique,” IEEE Access, vol. 5, pp. 10285–10295, 2017, doi: 10.1109/ACCESS.2017.2706275.
[36] P. Jayaprakash, B. Singh, D. P. Kothari, A. Chandra, and K. Al-Haddad, “Control of reduced-rating dynamic voltage restorer with a battery energy storage system,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1295–1303, 2014, doi: 10.1109/TIA.2013.2272669.
[37] A. K. Mishra, S. R. Das, P. K. Ray, R. K. Mallick, A. Mohanty, and D. K. Mishra, “PSO-GWO Optimized Fractional Order PID Based Hybrid Shunt Active Power Filter for Power Quality Improvements,” IEEE Access, vol. 8, pp. 74497–74512, 2020, doi: 10.1109/ACCESS.2020.2988611.
[38] T. A. Naidu, S. R. Arya, and R. Maurya, “Multiobjective Dynamic Voltage Restorer with Modified EPLL Control and Optimized PI-Controller Gains,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2181–2192, 2019, doi: 10.1109/TPEL.2018.2837009.
[39] K. Rajkumar, P. Parthiban, and N. Lokesh, “Control of transformerless T-type DVR using multiple delayed signal cancellation PLL under unbalanced and distorted grid condition,” Eng. Sci. Technol. an Int. J., vol. 24, no. 4, pp. 925–935, 2021, doi: 10.1016/j.jestch.2021.01.013.
[40] D. C. Bhonsle and R. B. Kelkar, “Performance evaluation of composite filter for power quality improvement of electric arc furnace distribution network,” Int. J. Electr. Power Energy Syst., vol. 79, pp. 53–65, 2016, doi: 10.1016/j.ijepes.2016.01.006.
[41] L. Hong, W. Shu, J. Wang, and R. Mian, “Harmonic Resonance Investigation of a Multi-Inverter Grid-Connected System Using Resonance Modal Analysis,” IEEE Trans. Power Deliv., vol. 34, no. 1, pp. 63–72, 2019, doi: 10.1109/TPWRD.2018.2877966.
[42] P. K. Ray, S. R. Das, and A. Mohanty, “Fuzzy-controller-designed-pv-based custom power device for power quality enhancement,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 405–414, 2019, doi: 10.1109/TEC.2018.2880593.
[43] J. Jayachandran and R. Murali Sachithanandam, “ANN based controller for three phase four leg shunt active filter for power quality improvement,” Ain Shams Eng. J., vol. 7, no. 1, pp. 275–292, 2016, doi: 10.1016/j.asej.2015.03.007.
[44] N. Ashraf, T. Izhar, G. Abbas, A. B. Awan, U. Farooq, and V. E. Balas, “A New Single-Phase AC Voltage Converter with Voltage Buck Characteristics for Grid Voltage Compensation,” IEEE Access, vol. 8, pp. 48886–48903, 2020, doi: 10.1109/ACCESS.2020.2979506.
[45] M. R. Khalghani and M. H. Khooban, “A novel self-tuning control method based on regulated bi-objective emotional learning controller’s structure with TLBO algorithm to control DVR compensator,” Appl. Soft Comput. J., vol. 24, pp. 912–922, 2014, doi: 10.1016/j.asoc.2014.08.051.
[46] I. Maurya, S. K. Gupta, and P. Maurya, “An efficient harmonic detection approach for shunt active filter based on wavelet transform,” Ain Shams Eng. J., vol. 9, no. 4, pp. 2833–2839, 2018, doi: 10.1016/j.asej.2018.01.003.

無法下載圖示 全文公開日期 2024/08/04 (校內網路)
全文公開日期 2026/08/04 (校外網路)
全文公開日期 2024/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE