簡易檢索 / 詳目顯示

研究生: 林明池
Ming-Chih - Lin
論文名稱: 反式結構高分子太陽能電池大面積製程與熱穩定性之研究
Large-area Process and Thermal Stability Study of Inverted Polymer Solar Cells
指導教授: 顏怡文
Yen, Yee-wen
黃裕清
Yu-Ching Huang
口試委員: 陳志銘
Chin-Ming Chen
衛子健
Wei Tzu-Chien
游進陽
Chin-Yang Yu
曹正熙
Cheng-Si Tsao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 171
中文關鍵詞: 高分子太陽能電池大面積噴塗製程溶液型三氧化鉬熱穩定度實驗
外文關鍵詞: polymer solar cells, spray-coating process, MoO3 solution process, thermal stability testing
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子太陽能電池具有溶液型製程、低製造成本、輕薄可撓曲特性、以及適合大面積與捲對捲方式大量製造等優勢,為新世代的太陽能電池。為了提升高分子太陽能電池的光電轉換效率與穩定性,很多研究團隊致力於改善高分子太陽能電池結構中電子與電荷傳輸界面層材料、合成新穎低能階高分子材料或摻雜其他材料於高分子材料中,來提升主動層對太陽光吸收及改善穩定性。
    在本篇論文中,首先探討電洞傳導層對反式高分子太陽能電池之熱穩定性影響。另外,為降低製程成本,我們也利用溶液型三氧化鉬(s-MoO3),取代傳統真空蒸鍍製備之三氧化鉬(t-MoO3),作為反式高分子太陽能電池之電洞傳導層,並觀察溶液型三氧化鉬在大氣環境以及低水氧環境下之穩定性。
    在第一部分,探討不同類型之電洞傳導層材料對熱穩定性的研究中,主動層為混合P3HT及PC61BM之溶液,以旋鍍及大面積超音波噴塗方式製作而成,而電洞傳導層則選用反式太陽電池中常見之MoO3或PEDOT: PSS。並將高分子太陽電池元件在大氣環境烤箱中作高溫之加速測試,溫度分別為80、90、100、110℃,藉由觀測短時間(10分鐘)與長時間(480分鐘)之效率變化曲線,了解主動層厚度與電洞傳導層類型對熱穩定度之影響。實驗結果顯示,使用不同類型電洞傳導層之高分子太陽能電池元件,其對於熱效應表現出不同之熱穩定趨勢。以PEDOT: PSS作為電洞傳導層之元件,其元件效率於加熱初期並未有明顯的下降,但隨著加熱時間的增加,即開始出現顯著的效率降幅;而以MoO3作為電洞傳導層之元件,則是於加熱初期便出現大幅度的效率降幅,而隨著加熱時間的增加,元件效率之降幅卻較為趨緩。本研究探討了高分子太陽能電池熱穩定性受電洞傳導層影響之機制。
    在第二部分,以大面積超音波噴塗製程技術製備溶液型三氧化鉬(s-MoO3),作為反式太陽電池之電洞傳導層層,以取代傳統真空蒸鍍型之三氧化鉬(t-MoO3)。本研究中主要控制溶液型三氧化鉬之膜層品質,包括電漿處理參數、s-MoO3之厚度以及噴塗膜層參數等等,希望能成功取代傳統真空蒸鍍型之t-MoO3,利於未來低成本及低耗能之商業量產化製程。藉由優化溶液型三氧化鉬膜層,以s-MoO3作為電洞傳導層之高分子太陽電池元件,其光電轉換效率可到達2.84 %,與使用t-MoO3作為電洞傳導層之高分子太陽電池元件效率相當。除此之外,以s-MoO3作為電洞傳導層之高分子太陽電池元件,在無封裝、低水氧值氮氣手套箱內存放經1296小時,尚保有96 %原有的光電轉換效率,也顯示以s-MoO3作為電洞傳導層之高分子太陽電池元件具備高穩定性。本研究亦成功以大面積噴塗溶液型s-MoO3取代傳統真空熱蒸鍍型t-MoO3,有利於未來高分子太陽能電池大面積量產製程。


    With efficient solution processes, low cost fabrication, light-weight construction, flexible applications and mass-production efficiency, Polymer Solar Cells (PSCs) have the potential to lead a new generation of solar cells. To capitalize on this potential, many research groups have made efforts to increase PSC’s ability to harvest energy from the solar spectrum and to increase the stability. These efforts have been focused on improving the interface material through advances in the charge transport layers, synthesis of low-band gap polymers and doping other material into the polymers.
    This paper has been investigated the effect of the Hole Transport Layer’s (HTL) material on the thermal stability of inverted PSCs and the application of s-MoO3 solution process to replace evaporation of t-MoO3 as the HTL for inverted PSCs and then to observe the stability of inverted PSCs in a nitrogen filled glove box in ambient conditions.
    Part 1 investigates the effects of various Hole Transport Layer materials (HTL) on thermal stability. The PSCs consist of P3HT and PC61BM as the active layer (AL) and two conventional HTLs, PEDOT: PSS with t-MoO3. The inverted devices were heated at 80、90、100、and 110℃ as accelerated tests during short times, 0-10min, and long times, 0-480min, to study the effect of photoactive film thickness on thermal stability based on the two HTLs. This study exhibits diverse characteristics of thermal stability for the PSCs with MoO3 and PEDOT: PSS as HTLs. In devices with PEDOT: PSS as HTLs, the PCE did not show an obvious drop in heating during the initial period, furthermore the PCE degradation increases with increased heating times. In devices with MoO3 as HTLs, the reduction of PCE mainly occurs in the initial heating stage and then exhibits a slow-decay.
    Part 2 describes the process that manufactured the s-MoO3 hole-transport layer for inverted bulk heterojunction PSCs which use a combination of solution based and spray coating process to replace the thermal evaporating deposition t-MoO3. The film quality of s-MoO3 was used as the main control in this study. Calculations were made using plasma treated s-MoO3, adjusting the film thickness of s-MoO3 and using spray coating processes. The goal is to determine whether s-MoO3 can successfully replace t-MoO3 for commercial production in the future. The PCE of 2.84 % can be achieved with s-MoO3 as HTLs in optimal films of s-MoO3, which is comparable to the reference t- MoO3 device. In addition, the stability test of PSCs was carried out in a nitrogen filled glove box condition without any encapsulation and still has 96 % of its initial value after 1296 hrs. The high stability of test PSCs proved that the conventional thermally evaporated t-MoO3 layer can be replaced by the solution process sprayed s-MoO3 film for the large area manufacturing in the future.

    目 錄 摘 要 I Abstract III 誌 謝 V 目 錄 VI 圖 目 錄 IX 表 目 錄 XIII 附 錄 圖 XIV 附 錄 表 XV 第一章背景介紹 1 1-1化石燃料的枯竭及其對環境的衝擊 1 1-2再生能源 2 1-2.1太陽能源 2 1-3太陽能電池發展 4 1-4太陽能電池的種類 5 1-5高分子太陽能電池 13 1-5.1簡介 13 1-5.2高分子太陽能電池操作原理 14 1-5.2.1光能吸收 15 1-5.2.2激子擴散 15 1-5.2.3電子-電洞對分離 16 1-5.2.4電荷傳輸 16 1-5.2.5電荷收集 17 1-5.3高分子太陽能電池參數特性分析 17 1-5.3.1元件效率量測模擬器之模擬光源 18 1-5.3.2短路電流 20 1-5.3.3開路電壓 20 1-5.3.4填充係數 21 1-5.3.5外部量子效率 21 1-5.3.6光電轉換效率 22 1-5.4高分子太陽能電池元件結構 22 1-5.4.1元件單層結構 23 1-5.4.2元件雙層結構 23 1-5.4.3元件塊狀異質接面層結構 25 1-5.4.4元件主動層疊層式結構 29 1-5.5高分子太陽能電池元件的物理性質 31 1-5.5.1共軛高分子 32 1-5.5.2功函數 34 1-5.5.3吸收光源之主動層及其厚度 35 1-5.5.4主動層之施體與受體界面 37 1-5.5.5主動層與電極界面 38 1-5.5.6主動層與電極之間的界面緩衝層 39 1-5.5.7電極材料 42 第二章文獻回顧與研究動機 44 2-1元件光電轉換效率及熱穩定度的提升 45 2-1.1高分子主動層使用噻吩衍生物提升元件之光電轉換效率 45 2-1.2添加富勒烯的衍生物於高分子主動層改變主動層結構形態及提升元件之光電轉換效率與熱穩定性 47 2-1.3高分子太陽能電池元件界面層熱劣化所造成光電轉換效率下降 49 2-2溶液型三氧化鉬(s-MoO3)及大面積噴塗製程技術 53 2-2.1溶液型三氧化鉬(s-MoO3) 53 2-2.2大面積噴塗製程技術 57 2-3研究動機 60 第三章實驗方法 62 3-1實驗藥品及溶劑 62 3-2實驗儀器設備 64 3-2.1超音波清洗機 64 3-2.2氮氣電漿處理機 65 3-2.3可程式旋轉塗佈機 67 3-2.4可程式噴塗塗佈機 68 3-2.5高真空熱蒸鍍機 69 3-2.6低水氧值氮氣手套箱系統 70 3-3元件製作 71 3-3.1溶液配置 71 3-3.2元件製作程序 72 3-4元件量測 76 3-4.1元件光電轉換效率量測 76 3-4.2原子力顯微鏡量測 78 3-4.3紫外光與可見光譜儀量測 79 第四章以P3HT:PC61BM為主動層材料,使用t-MoO3及PEDOT:PSS當電洞傳導層之反式高分子太陽能電池元件熱穩定實驗 82 4-1簡介 82 4-2研究方法 82 4-3結果與討論 85 4-3.1 ZnO旋塗膜層透光度測試結果 85 4-3.2膜層表面粗糙度測試結果 86 4-3.3影響元件熱穩定度因素探討 91 4-3.5不同加熱溫度於短時間內對於不同電洞傳導層之元件熱穩定性影響 98 4-3.6不同加熱溫度於長時間內對於不同電洞傳導層之元件熱穩定性影響 101 4-4本章結論 106 第五章超音波大面積噴塗技術溶液型MoO3作為電洞傳導層之反式高分子太陽能電池 107 5-1簡介 107 5-2研究方法 107 5-3結果與討論 108 5-3.1 N2電漿處理改質主動層 108 5-3.2超音波噴塗s-MoO3參數測試 113 5-3.3以大面積噴塗s-MoO3製作之反式高分子太陽能電池之穩定性 122 5-4本章結論 125 第六章 結論 126 參考文獻 129 附 錄 147 A. 縮寫表 147 B. 符號表 150 C. 附錄圖表 152

    [1] http://www.oecd-ilibrary.org/economics/oecd-factbook-2010/world-electricity-generation-bysource-of-energy-figure_factbook-2010-graph119-en. (2011).
    [2] N. Stern, The economics of climate change, (2007).
    [3] G. Boyle, A. Gary, Renewable energy, Oxford University Press. (2004).
    [4] M. McGehee, Printing solar cells for greener energy, Stanford University. (2012).
    [5] https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89
    [6] N.S. Lewis, Basic research needs for solar energy utilization, US Department of Energy. (2005).
    https://science.energy.gov/~/media/bes/pdf/reports/files/Basic_Research_Needs_for_Solar_Energy_Utilization_rpt.pdf
    [7] K.K. Goyal, Renewable energy. (2009).
    [8] L. Fraas, L. Partain, Solar cells: a brief history and introduction, solar cells and their applications, 2nd Ed. (2010).
    [9] 2011 年經濟部技術處 產業技術白皮書
    [10] Photovoltaic milestones: US Energy Information Administration: http://www.eia.gov/cneaf/solar.renewables/renewable.energy.annual/backgrnd/chap11i.htm.
    [11] S.R. Wenham, M.A. Green, M.E. Watt, R. Corkish, Applied photovoltaics, Earthscan. 2nd Ed. (2007).
    [12] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics. 11 (2009) 649-653.
    [13] A. Kojima, K. Teshima, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
    [14] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (2013) 316-319.
    [15] H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Photovoltaics, interface engineering of highly efficient perovskite solar cells, Science. 345 (2014) 542-546.
    [16] http://cdn.phys.org/newman/gfx/news/hires/2016/1-claimsforsol.jpg
    [17] G.P. Smestad and M. Grätzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, J. Chem. Educ. 75 (1998) 752-756.
    [18] M. Grätze, Review: dye-sensitized solar cells, J. Photochem. Photobiol. 4 (2003) 145-153.
    [19] 郭政良,「染料敏化太陽電池之建材研究」,國立高雄應用科技大學應用工程科學研究所碩士論文,第7-15頁(2010)。
    [20] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science. 334 (2011) 629-634.
    [21] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.
    [22] 黃建榮,「有機太陽能電池技術發展」,光連雙月刊2014年5月•No.111,第55-57頁。
    [23] http://pv.energytrend.com.tw/news/20140327-8086.html.
    [24] R.P. Singh, O.S. Kushwaha, Polymer solar cells: an overview, Macromol. Symp. 327 (2013) 128-149.
    [25] T.J. Savenije, Organic solar cells, chapter 8. exciton solar cells, Delft University of Technology. 8.1-8.15. http://aerostudents.com/files/solarCells/CH8OrganicSolarCells.pdf
    [26] 黃義雄,「含4,5-雙氰基咪唑之小分子及其光伏打電池之應用」,國立中央大學化學研究所碩士論文,第12頁(2000)。
    [27] B. Gregg, Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation, J Appl Phys. 93 (2003) 3605-3614.
    [28] S.R. Scully, M.D. McGehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors, J. Appl. Phys. 100 (2006) 034907-034907-5.
    [29] D.I.K. Petritsch, Organic solar cell architectures, PhD thesis. Technisch-Naturwissenschaftliche Fakultぴat der Technischen Universitぴat Graz (Austria) (2000).
    https://solarpassion.com/solar_thesis/thesis_klaus.pdf
    [30] M.N, Jean, Organic photovoltaic materials and devices. CR Phys. 3 (2002) 523-542.
    [31] H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview, J Mater Res. 19 (2004) 1924-1945.
    [32] B.A. Gregg, The photoconversion mechanism of excitonic solar cells, Mrs Bulletin. 30 (2005) 20-22.
    [33] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80 (2000) 1288-1290.
    [34] http://web.it.nctu.edu.tw/~jtchen/research/c-research-opv.htm
    [35] https://en.wikipedia.org/wiki/Air_mass_(solar_energy)
    [36] http://www.greenrhinoenergy.com/solar/radiation/spectra.php
    [37] https://www.newport.com/t/introduction-to-solar-radiation
    [38] http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
    [39] J.J.M. Halls, A.C. Arias, D. MacKenzie, W.S. Wu, K. Inbasekaran, E.P. Woo, R.H. Friend, Photodiodes based on polyfluorene composites: influence of morphology, Adv. Mater. 12 (2000) 498-502.
    [40] R. Janssen, Introduction to polymer solar cells. (3Y280) Departments of Chemical Engineering & Chemistry and Applied Physic Eindhoven University of Technology, the Netherlands.
    [41] J.D. Servaites, M.A. Ratner, T.J. Marks, Organic solar cells: a new look at traditional models, Energy Environ. Sci. 4 (2011) 4410-4422.
    [42] S Karg, W Riess, V. Dyakonov, M. Schwoerer, Electrical and optical characterization of poly (phenylene-vinylene) light emitting diodes, Synth. Met. 54 (1993) 1-3.
    [43] S. Rajaputra, S. Vallurupalli, V.P. Singh, Schottky diode solar cells on electrodeposited copper phthalocyanine films, Sol. Energy Mater. Sol. Cells. 93 (2009) 60-64.
    [44] C.Y. Kwong, A.B. Djurišiĉ, P.C. Chui, L.S.M. Lam, W.K. Chan, Improvement of the efficiency of phthalocyanine organic schottky solar cells with ITO electrode treatment, Appl. Phys. A. 77 (2003) 555-560.
    [45] P.E Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly (3-hexylthiophene), Adv Mater. 20 (2008) 3516-3520.
    [46] J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, 4.2% efficient organic photovoltaic cells with low series resistances, Appl. Phys. Lett. 84 (2004) 3013-3015.
    [47] P. Peumans, S.R. Forrest, Very-high-efficiency double- heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79 (2001) 126-128.
    [48] S. Yoo, B. Domercq, B. Kippelen, Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60, J. Appl. Phys. 97 (2005) 103706-103706-9.
    [49] W. J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition, Appl. Phys. Lett. 90 (2007) 253511-253511-3.
    [50] J.Yang, T.Q. Nguyen, Effects of thin film processing on pentacene/C60 bilayer solar cell performance, Org. Electron. 8 (2007) 566-574.
    [51] P. Sullivan, T. Jones, Pentacene/fullerene (C60) heterojunction solar cells: device performance and degradation mechanisms, Org. Electron. 9 (2008) 656-660.
    [52] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 2582 (1992) 1474-1476.
    [53] J.K.J. van Duren, X. Yang, J. Loos, C.W.T. Bulle-Lieuwma, A.B. Sieval, J.C. Hummelen, R.A.J. Janssen, Relating the morphology of poly (p-phenylene vinylene)/methanofullerene blends to solar-cell performance, Adv. Funct. Mater. 14 (2004) 425-434.
    [54] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells, Adv. Funct. Mater. 14 (2004) 1005-1011.
    [55] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11 (2001) 374-380.
    [56] D. Gebeyehua, C.J. Brabeca, F. Padingerb, T. Fromherzb, J.C. Hummelenc, D. Badtd, H. Schindlerd, N.S. Sariciftcia, The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes, Synth. Met. 118 (2001) 1-9.
    [57] M. Girtan, M. Rusu, Role of ITO and PEDOT: PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells, Sol. Energy Mater. Sol. Cells. 94 (2010) 446-450.
    [58] D. Barrera, Y.J. Lee, J.W.P. Hsu, Influence of ZnO sol-gel electron transport layer processing on BHJ active layer morphology and OPV performance, Energy Mater. Sol. Cells. 125 (2014) 27-32.
    [59] M.H. Chen, Y.C. Kuo, H.H. Lin, Y.P. Chao, M.S. Wong, Highly stable inverted organic photovoltaics using aluminum-doped zinc oxide as electron transport layers, J. Power Sources. 275 (2015) 274-278.
    [60] A. Hadipour, B. de Boer, J. Wildeman, F.B. Kooistra, J.C. Hummelen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, P.W.M. Blom, Solution-processed organic tandem solar cell, Adv. Funct. Mater. 16 (2006) 1897-1903.
    [61] T. Ameri, N. Li, C. J. Brabec, Highly efficient organic tandem solar cells: a follow up review, Energy Environ. Sci. 6 (2013) 2390-2413.
    [62] Y. Yuan, J. Huang, G. Li, Intermediate layers in tandem organic solar cells, Green. 1 (2011) 65-80.
    [63] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science. 317 (2007) 222-225.
    [64] D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Optimization of inverted tandem organic solar cells, Sol. Energy Mater. Sol. Cells. 95 (2011) 921-926.
    [65] https://www.google.com.tw/search?q=inverted+tandem+organic+solar+cells&rlz=1C2ASUT_enTW610TW693&biw=1366&bih=700&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiw7czJwaLRAhVBGJQKHUfzA5sQ_AUIBigB#imgrc=hp9sxxioFBjn6M%3A
    [66] A.K. Singh, Organic photovoltaics using novel pentacene derivatives, Northeastern University Boston, Massachusetts December. (2013).
    [67] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Comm. 16 (1977) 578-580.
    [68] https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/advanced-chemistryprize2000.pdf
    [69] https://zh.wikipedia.org/wiki/%E8%81%9A%E4%B9%99%E7%82%94
    [70] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 258 (1992) 1474-1476.
    [71] 蔡進譯,超高效率太陽電池, 物理雙月刊(廿七卷五期)2005 年 10 月
    [72] M. Niggemann, M. Riede, A. Gombert, K. Leo, Light trapping in organic solar cells, phys. status solidi. 205 (2008) 2862-2874.
    [73] P. Peumans, V. Bulovic, S.R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
    [74] V.D. Mihailetchi, H. Xie, B. de Boer, L.J.A. Koster, P.W.M. Blom, Charge transport and photocurrent generation in poly (3-hexylthiophene):methanofullerene bulk-heterojunction solar cells, Adv. Funct. Mater. 16 (2006) 699-708.
    [75] N.F. Mott, Note on the contact between a metal and an insulator or semiconductor, Proc. Camb. Phil. Soc. 34 (1938) 568-572.
    [76] W. Monch, Metal-semiconductor contacts: electronic properties, Surf. Sci. 299 (1994) 928-944.
    [77] L.M. Chen, Z. Xu, Z. Honga and Y. Yang, Interface investigation and engineering-achieving high performance polymer photovoltaic devices, J. Mater. Chem. 20 (2010) 2575-2598.
    [78] N.C. Greenham, R.H. Friend, Semiconductor device physics of conjugated polymers, Solid State Phys. 49 (1995) 1-149.
    [79] A. Kumar, S. Sista, Y. Yang, Dipole induced anomalous s-shape I-V curves in polymer solar cells, J. Appl. Phys. 105 (2009) 094512-094512-6.
    [80] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mate. 18 (2006) 572-576.
    [81] S. Wu, S. Han, Y. Zheng, J. Wang, pH-neutral PEDOT: PSS as hole injection layer in polymer light, Org. Electron. 12 (2011) 504-508.
    [82] Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Effects of thickness and thermal annealing of the PEDOT: PSS layer on the performance of polymer solar cells, Org. Electron. 10 (2009) 205-209.
    [83] Y.H. Kim, S.H. Lee, J. Noh, S.H. Han, Performance and stability of electroluminescent device with selfassembled layers of poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes, Thin Solid Films. 510 (2006) 305-310.
    [84] V. Shrotriya, V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88 (2006) 073508-073508-3.
    [85] C. Zhang, H. You, Z. Lin, Y Hao, Inverted organic photovoltaic cells with solution-processed zinc oxide as electron collecting layer, Jpn. J. Appl. Phys. 50 (2011) 082302-082302-2.
    [86] D.Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan, Y. Gao, The effect of molybdenum oxide interlayer on organic photovoltaic cells, Appl. Phys. Lett. 95 (2009) 093304-093304-3.
    [87] M. Lögdlund, J.L. Brédas, Theoretical studies of the interaction between aluminum and poly (p‐phenylenevinylene) and derivatives, J. Chem. Phy. 101 (1994) 4357-4364.
    [88] H. Antoniadis, B.R. Hsieh, M.A. Abkowitz, S.A. Jenekhe, M. Stolka, Photovoltaic and photoconductive properties of aluminum/poly (p-phenylene vinylene) interfaces, Synth. Met. 62 (1994) 265-271.
    [89] D. Gupta, M. Bag, K.S. Narayan, Correlating reduced fill factor in polymer solar cells to contact effects, Appl. Phys. Lett. 92 (2008) 093301-093301-3.
    [90] J. Huang, Z. Xu, Y. Yang, Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate, Adv. Funct. Mater. 17 (2007) 1966-1973.
    [91] S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, N.R. Armstrong, Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode, J. Appl. Phy. 84 (1998) 2324-2327.
    [92] L.S. Hung, C.W. Tang, M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett. 70 (1997) 152-154.
    [93] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer, Appl. Phys. Lett. 90 (2007) 163517-163517-3.
    [94] O. Yoshikawa, A. Hayakawa, T. Fujieda, K. Uehara, S. Yoshikawa, Enhanced efficiency and stability in P3HT: PCBM bulk heterojunction solar cell by using TiO2 hole blocking layer, Mater. Res. Soc. 965 (2006) 0965-S11-04.
    [95] A. Manor, E.A. Katz, T. Thomas, K.C. Frederik, Enhancing functionality of ZnO hole blocking layer in organic photovoltaics, Sol. Energy Mater. Sol. Cells. 98 (2012) 491-493.
    [96] S. K.Hau, H.L.Yip, N.S. Baek, J. Zou, K. O’Malley, K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett. 92 (2008) 253301-253301-3.
    [97] H.B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phy. 48 (1977) 4729-4733.
    [98] H. Gommans, B. Verreet, B.P. Rand, R. Muller, J. Poortmans, P. Heremans, J. Genoe, On the role of bathocuproine in organic photovoltaic cells, Adv. Funct. Mater. 18 (2008) 3686-3691.
    [99] C.Y. Kwong, A.B. Djurišiĉ, P.C. Chui, L.S.M. Lam, W.K. Chan, Improvement of the efficiency of phthalocyanine organic schottky solar cells with ITO electrode treatment, Appl. Phys. 77 (2003) 555-560.
    [100] H. Hoppe, M. Niggemann, C. Winder, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells, Adv Funct. Mater. 14 (2004) 1005-1011.
    [101] http://blog.sciencenet.cn/blog-60562-610180.html
    [102] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv Funct. Mater. 17 (2007) 1636-1644.
    [103] G.H. Lu, L.G. Li, X.N. Yang, Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment, Adv. Mater. 19 (2007) 3594-3598.
    [104] B. Meng, Z. Wang, W. Ma, Z. Xie, J. Liu, L. Wang, A cross-linkable donor polymer as the underlying layer to tune the active layer morphology of polymer solar cells, Adv. Funct. Mater. 26 (2015) 226-232.
    [105] H.W. Liu, D.Y. Chang, W.Y. Chiu, S.P. Rwei, L. Wang, Fullerene bisadduct as an effective phase-separation inhibitor in preparing poly(3-hexylthiophene)-[6,6]-phenyl-C61-butyric acid methyl ester blends with highly stable morphology, J. Mater. Chem. 22 (2012) 15586-15591.
    [106] F. Ouhib, M. Tomassetti, J. Manca, F. Piersimoni, D. Spoltore, S. Bertho, H. Moons, R. Lazzaroni, S. Desbief, C. Jerome, C. Detrembleur, Thermally stablebulk heterojunction solar cells based on cross-linkable acrylate-functionalizedpolythiophene diblock copolymers, Macromolecules. 46 (2013) 785-795.
    [107] W. Greenbank, L. Hirsch, G. Wantz, S. Chambon, Interfacial thermal degradation in inverted organic solar cells, Appl. Phys. Lett. 107 (2015) 263301-263305.
    [108] S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, G. Wantz, MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells, Materials. 5 (2012) 2521-2536.
    [109] S.J. Lee, B.S. Kim, J.Y. Kim, M. Yusoff, J. Jang, Stable organic photovoltaic with PEDOT: PSS and MoOX mixture anode interfacial layer without encapsulation, Org. Electron. 19 (2015) 140-146.
    [110] J.J. Jasieniak, J. Seifter, J. Jo, T. Mates, A.J. Heeger, A solution-processed MoOx anode iInterlayer for use within organic photovoltaic devices, Adv. Funct. Mater. 22 (2012) 2594-2605.
    [111] M.F. Xu, L.S. Cui, X.Z. Zhu, C.H. Gao, X.B. Shi, Z.M. Jin, Z.K. Wang, L.S. Liao, Aqueous solution-processed MoO3 as an effective interfaciallayer in polymer/fullerene based organic solar cells, Org. Electron. 14 (2013) 657-664.
    [112] S. Murase, Y. Yang, Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method, Adv. Mater. 24 (2012) 2459-2462.
    [113] L.K. Jagadamma, H. Hu, T. Kim, G.N. Ndjawa, A.E. Mansour, A. E. Labban, J.C. Faria, R. Munir, D.H. Anjum, M.M. Lachlan, A. Amassian, Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells, Nano Energy. 28 (2016) 277-287.

    QR CODE