簡易檢索 / 詳目顯示

研究生: 羅婉芝
Wan-chih Lo
論文名稱: Effect of Operating Conditions on the Reduction of Nitric oxide in Photo-SCR Process with Ammonia
Effect of Operating Conditions on the Reduction of Nitric oxide in Photo-SCR Process with Ammonia
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-chi Chiang
曾迪華
Dyi-hwa Tseng
劉志成
Jhy-chern Liu
曾堯宣
Yao-hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 116
中文關鍵詞: 選擇性觸媒還原ㄧ氧化氮鐵掺雜La2Ti2O7氮氧化物還原
外文關鍵詞: SCR, nitric oxide, Fe-La2Ti2O7, NOx reduction
相關次數: 點閱:194下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以各種異相光觸媒(TiO2, La2Ti2O7及Fe-La2Ti2O7)與不同光源(UV-254, UV-365及LED395nm)光催化還原一氧化氮,探討光強度、氨氣與一氧化氮初始濃度、氧氣濃度與相對濕度對還原效率之影響及其光還原反應機制。實驗結果顯示,在設定的操作條件下,若表面反應為總反應之速率決定步驟時,一氧化氮之光還原速率為Eley-Rideal模式。
ㄧ氧化氮與氨氣的光還原實驗結果顯示:一氧化氮之光還原效率與光強度呈正比,但過高的光強度下,電子、電洞的再結合現象會明顯影響還原效率;當吸附於觸媒表面的氨氣濃度、與吸附於觸媒表面氨氣行光還原反應之ㄧ氧化氮濃度及還原活性點Ti3+為Ti4+的氧氣濃度彽於特定值時,一氧化氮之光還原為質傳控制反應,反之,則為表面化學反應控制反應;水與氨氣分子間的競爭吸附導致較低的一氧化氮光還原效率,此現象於Fe-La2Ti2O7光催化程序中更為明顯,可歸因於其表面性質易受水氣影響;於不同氨氣初始濃度下,一氧化氮光還原速率之理論值與實驗值不謀而合;透過表觀光量子產率與耗能結果可發現UV-365/TiO2為最適化之光催化程序。


The mechanism of photo-SCR on the selective reduction of nitrogen oxide is investigated in this study. The performances of nitrogen oxide reduction reaction under various light intensities, initial ammonia and nitric oxide concentrations, oxygen concentrations and relative humidity are discussed by using diverse photocatalysts, such as TiO2, La2Ti2O7 and Fe-La2Ti2O7, and light sources, eg. UV (254nm), UV (365nm) and UVLED (395nm). The reaction rate is expressed based on an Eley-Rideal kinetic model with assumption that the surface reaction is the rate-determining step in overall reaction, while the reaction rate at a given operating condition can be simulated.
The experimental results indicate that NO removal efficiency increased with light intensity, but the electron-hole pair recombination of the photocatalysts under various light sources and light intensities is strongly affecting the NO removal efficiency. Reaction control can be observed once the concentration of ammonia adsorbed on the surface of photocatalyst, nitric oxide reacted with ammonia which adsorbed on photocatalyst’s surface and oxygen used for the reduction of Ti3+ to Ti4+ under specific values; otherwise, the reaction will be processed under mass transfer control. The compaction of water molecular and ammonia molecular result in the decrease the NO removal efficiency; furthermore, the effect of relative humidity for Fe-La2Ti2O7 is more significant than the other photocataltsts because of its surface properity. In addition, the simulated results of reaction rate under various initial concentration of ammonia agree fairly well with the available experimental data. According to the results of the apparent quantum yield and the electrical energy per order (EEO), to operate under UV-365/TiO2 photoreduction process is the optimal on the viewpoint of photon utilization and energy saving.

English Abstract……………………………………………………………………………i Chinese Abstract………………………………………………………………………… iii Acknowledment…………………………………………………………………………..iv Table of Content………………………………………………………………………......v List of Figures…………………………………………………………………………....vii List of Tables………………………………………………………………………..........xi List of Symbols…………………………………………………………………………..xii Chapter 1 Introduction…………………………………………………………………….1 1.1 Background……………………………………………………………………..1 1.2 Objective and Scope……………………………………………………………2 Chapter 2 Literature Review………………………………………………………………3 2.1 Control Technologies for NOx in Gaseous Effluents…………………………..3 2.1.1 Decomposition of NOx by Reduction…………………………………….3 2.1.2 Decomposition of NOx by Oxidation…………………………………….8 2.1.3 Comparison of Controlling Technologies for NOx……………………..11 2.2 Parameters Effect of SCR……………………………………………………..14 2.2.1 Effect of Reaction Temperature…………………………………………14 2.2.2 Effect of Ammonia Concentration………………………………………15 2.2.3 Effect of Nitric Oxide Concentration……………………………………17 2.2.4 Effect of Oxygen Concentration………………………………………...18 2.2.5 Effect of Retention Time……………………………………………......20 2.2.6 Effect of Water Vapor Concentration…………………………………...20 2.2.7 Effect of NO/NH3 Dosage…………………………………………….....22 2.3 Photolysis and Photocatalytic Process……………………….………………..23 2.3.1 Fundamental of Photolysis and Photocatalytic Processe………………..24 2.3.2 Basic Properties of Photocatalysts………………………………………25 2.3.3 Reaction Mechanisms and Kinetics……………………………………..33 2.3.4 Applications of Photocatalysis…………………………………………..36 2.4 Fundamentals and Applications of LEDs in Photocatalytic Processes………..36 2.4.1 Fundamentals of LEDs…………………………………………………..37 2.4.2 Characteristics and Development of LEDs……………………………...39 2.4.3 Application of LEDs on UV/TiO2 process……………………………...42 Chapter 3 Experimental …………………………………………………………………44 3.1 Instruments…………………………………………………………………….44 3.2 Chemicals……………………………………………………………………...46 3.3 Experiment System and Photoreactor…………………………………………47 3.4 Experiment Framework……………………………………………………….49 3.5 Experimental Procedures……………………………………………………...50 3.5.1 Photocatalyst Preparation………………………………………………..50 3.5.2 Coating the photocatalyst……………………………………………….52 3.5.3 Photocatalyst Process……………………………………………………52 3.6 Analysis………………………………………………………………………..56 3.6.1 NO/NOx analyzer……………………………………………………….56 3.6.2 GC/TCD…................................................................................................57 3.7 Background Experiments……………………………………………………...58 Chapter 4 Results and Discussion………………………………………………………..64 4.1 Characterization of photocatalysts ……………………………………………64 4.2 Photo-SCR with NH3 by UV/TiO2 process…………………………………...67 4.2.1 Effect of light intensity………………………………………………….67 4.2.2 Effect of initial ammonia concentration………………………………...77 4.2.3 Effect of initial nitric oxide concentration………………………………82 4.2.4 Effect of Oxygen Concentration………………………………………...87 4.2.5 Effect of Relative Humidity……………………………………………..92 4.2.6 Reaction kinetics of photo-SCR with NH3 using Fe-La2Ti2O7 as Photocatalyst……………………………………………………………97 4.3 Electrical energy determination……………………………………………...104 Chapter 5 Conclusions and Recommendations…………………………………………108 Reference……………………………………………………………………………….110 Vita……………………………………………………………………………………...116

Anderson, W., H. Mark and A. P. Skelley, “A Low Temperature Oxidation System for the Control of NOx Emissions Using Ozone Injection,” BOC gases presentation, the institute of clean air companies (1998).

Baveja, K. K., D. S. Rao and M. K. Sarkar, “Kinetics of Absorption of Nitric Oxide in Hygrogen Peroxide Solution,” J. Chem. Eng. Japan, Vol. 12, pp. 322-325 (1979).

Behnajady, M. A. and N. Modirshahla, “Evaluation of Electrical Energy per Order (Eeo) with Kinetic Modeling on Photooxidative Degradation of C.I Acid Orange 7 in a Tubular Continuous-Flow Photoreactor,” Ind. Eng. Chem. Res., Vol. 45, pp.553-557 (2006).

Bolton, J. R. G., K. G. Bircher, W. Tumas and M. Rouse, “Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric-and Solar-Derived System,” Pure Appl. Chem., Vol. 73, pp.627-637 (2001).

Calatayud, M., B. Mguig and C. Minot, “Modeling Catalytic Reduction of NO by Ammonia over V2O5,” Surf. Sci. Rep., Vol. 55, pp. 169-236 (2004).

Cant, N. W. and I. Liu, “The Mechanism of the Selective Reduction of Nitrogen Oxides by Hydrocarbons on Zeolite Catalysis,” Catal. Today, Vol. 63, pp. 133-146 (2000).

Casagrande, L., L. Lietti, I. Nova, P. Forzatti and A. Baiker, “SCR of NO by NH3 over TiO2-supported V2O5-MoO3 Catalysts: Reactivity and Redox Behavior,” Appl. Catal., B-Environ, Vol. 22, pp. 63-77 (1999).

Chang, M. B. and C. F. Cheng, “Low Temperature SNCR Processes for NOx Control,” Sci. Total. Environ., Vol. 198, pp. 73-78 (1997).

Djerad, S., M. Crocoll, S. Kureti, L. Tifouti and W. Weisweiler, “Effect of Oxygen Concentration on the NOx Reduction with Ammonia over V2O5-WO3/TiO2 Catalyst,” Catal. Today, Vol. 113, pp. 208-214 (2006).

Duffy, B. L., E. C. Hyde, N. W. Cant and P. F. Nelson, “Isotopic Labeling Studies of the Effects of Temperature, Water, and Vanadia Loading on the Selective Catalytic Reduction of NO with NH3 over Vanadia-Titania Catalysts,” J. Phys. Chem., Vol. 98, pp. 7153-7161 (1994).

Efstathiou A.M. and K. Fliatoura, “Selective Catalyst Reduction of Nitric Oxide with Ammonia over V2O5/TiO2 Catalyst: A Steady-state and Transient Kinetic Study,” Appl. Catal., B- Environ, Vol. 6, pp. 35-59 (1995).

Eng, J. and C. H. Bartholomew, “Kinetic and Mechanistic Study of NOx Reduction by NH3 over H-form Zeolites,” J. Catal., Vol. 171 pp. 14-26 (1997).

Garcia-Bordeje, E., J. L. Pinilla, M. J. Lazaro and R. Moliner, “NH3-SCR of NO at Low Temperatures over Sulphated Vanadia on Carbon-coated Monoliths: Effect of H2O and SO2 Traces in the Gas Feed,” Appl. Catal., B-Environ, Vol. 66, pp. 281-287 (2006).
Grahn, H. T., “Introduction to Semiconductor Physis,” Word Scientific, Singapore (1999).

Hwang, D. W., L. S. Lee, W. Li, and S. H. Oh, “Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd),” J. Phys. Chem. B., Vol. 107, pp. 4963-4970 (2003).

Hwang, D. W., H. G. Kim and J. S. Lee, “Photocatalytic Decomposition of Water-methanol Solution over Metal-doped Layered Perovskites under Visible Light Irradiation,” Catal. Today, Vol. 93-95, pp. 845-850 (2004).

Hwang, D. W., H. G. Kim and J. S Lee, “Photocatalytic Hydrogen Production from Water over M-doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation,” J. Phys. Chem. B, Vol. 109, pp. 2093-2102 (2005).

Kann, J., “Oxidation of Nitric Oxide by Potassium Permanganate,” Tr.Tallin. Polytecch.Inst., Vol. 402, No.65 (1977).

Kim, H. G., D. W. Hwang, S. W. Bae, J. H. Jung and J. S. Lee, “Photocatalytic Water Splitting over La2Ti2O7 Synthesized by the Polymerizable Complex Method,” Catal. Lett., Vol. 91, pp. 193-198 (2003).

Kingery, W. D., H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” Wiley J., N.Y. (1976).

Krishnan, A.T. and A.L. Boehman, “Selective Catalyst Reduction of Nitric Oxide with Ammonia at Low Temperature,” Appl. Catal., B-Environ, Vol. 18, pp. 189-198 (1998).

Ku, Y. and Y. W. Wang, “Photocatalytic Degration of Reactive Red 22 in Aqueous Solution by UVLED Radiation,” Water Res., Vol. 40, pp. 2249-2258 (2006).

Ku, Y., L. C. Wang and C. M. Ma, “Photocatalytic Decomposition of Isopropanol in Aqueous Solution Using Perovskite-structured La2Ti2O7,” Chem. Engr. Technol., Vol. 30 (7), pp. 895-900 (2007).

Lin, Y. M., Y. H. Tseng, J. H. Huang, C. C. Chao, C. C. Chen, and I. Wang, “Photocatalytic Activity for Degradation of Nitrogen Oxides over Visible-Light- Responsive Titania-based Photocatalysts,” Environmental Science and Technology, Vol. 40, pp. 1616-1621 (2006).

Nova, I., C. Ciardelli, E. Tronconi, D. Chatterjee and B. Bandl-Konrad, “NH3-NO/NO2 Chemistry over V-based Catalysts and its Role In the mechanism of the Fast SCR Reaction,” Catal. Today, Vol. 114 pp. 3-12 (2006).

Robinson, S., “Hydrogen Peroxide: First Acid for Air Pollution,” Natl Environ J, Vol. 21nl, pp. 45-53 (1993).

Sada, E., H. Kumazawa and M. A. Butt, “Absorption of Lean NO, in Aqueous Solutions of NaClO2, and NaOH,” J. Chem. Eng. Data., Vol. 23, pp. 161-165 (1978).

Simachev, V. Y., S. S. Novoselov, V. A. Svetlichnyi, M. V. Gorokhov, V. I. Semenov, V. A. Ryzhikov and V. V. Demchuk, “Investigation of the Ozone-Ammonia Method of Simultaneous Desulphurisation and Denitrification of Flue Gas when Burning Donetsk Coals,” Thermal Engineering, Vol. 35, No. 3, pp. 171-175 (1988).

Stevenson S.A., J. C. Vartuli and C.F. Brooks, “Kinetics of the Selective Catalytic Reduction of NO over HZSM-5,” J. Catal., Vol. 190 pp. 228-239 (2000).

Sze, S. M. ”Physics of Smeiconductor Divices,” John Wiely & Sons, Inc., New York, US (1991).

Takahashi, S., “Oxidation of Nitrogen Monoxide in a Waste Gas,” Japan kokai: 7937095, CA-91:p78463b (1979).

Teramura, K., T. Tanaka, S. Yamazoe, K. Arakaki and T. Funabiki, “Kinetic Study of Photo-SCR with NH3 over TiO2,” Appl. Catal., B-Environ, Vol. 53 pp. 29–36 (2004).

Wu, Z., B. Jiang, Y. Liu, W. Zhao and B. Guan, “Experiment Study on a Low-temperature SCR Catalyst Base on MnOx/TiO2 Prepared by Sol-gel Method,” J. Hazard. Mater., Vol. 145, pp. 488-494 (2007).

Yang, Y., Y. Sun and Y. Jiang, “Structure and Photocatalytic Property of Perovskite and Perovskite-related Compounds,” Mater. Chem. Phys, Vol. 96, pp. 234-239 (2006).

Zhang, F., S. Zhang, N. Guan, E. Schreier, M. Richter, R. Eckelt and R. Fricke, “NO SCR with Propane and Propene on Co-based Alumina Catalysts Prepared by Co-precipitation,” Appl. Catal., B-Environ, Vol. 73, pp. 209-219 (2007).

QR CODE