簡易檢索 / 詳目顯示

研究生: 鍾尚霖
Shang-Lin Chung
論文名稱: 4H-SiC磊晶層少數載子生命週期測量之研究
Investigation of minority carrier lifetime measurement in 4H-SiC epitaxial layer
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 洪儒生
Lu-Sheng Hong
黃智方
Chih-Fang Huang
楊博斐
Po-Fei Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 碳化矽4H-SiC同質磊晶少數載子生命週期磊晶層與基材間之界面復合
外文關鍵詞: 4H-SiC, 4H-SiC homoepitaxy, minority carrier lifetime, epilayer/substrate interface recombination
相關次數: 點閱:213下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用裝載266nm脈衝雷射之時間解析光致發光光譜(time-resolved photoluminescence, TRPL)分析了在低注入條件下磊晶層厚度小於15μm的4H-SiC磊晶片中少數載子的復合行為。透過建立了一維連續方程式模型來模擬過量載子於4H-SiC磊晶層中,同時受磊晶層表面復合與磊晶層與基材間的界面復合影響時,過量載子的衰退曲線。模型模擬結果顯示,當磊晶層表面的復合速率(S1)大於1000cm/s,磊晶層與基材間的界面複合速率(S2)會主宰1/e衰退時間後的過量載子濃度變化。透過將磊晶層載子生命週期約為170ns的磊晶片樣品之TRPL量測數據與建制好的模型模擬比較,求得磊晶片樣品的S2大約為1000~3000cm/s,而S1範圍則從20000~40000cm/s。透過此方法所測得的S2應可作為評估4H-SiC晶片品質的指標之一。


    The minority carrier recombination behavior of 4H-SiC epiwafer with epilayer thickness less than 15 μm has been investigated using time-resolved photoluminescence (TRPL) spectroscopy with a 266 nm laser source under low injection condition. A one-dimensional continuity equation was established to simulate the decay of excess carrier of epiwafer under the influence of surface recombination at both front and rear sides of the epilayer. Model simulations indicated that interface recombination velocity at epilayer/4H-SiC (S2) governs carrier decay after 1/e decay time when the surface recombination velocity at the front surface (S1) exceeds 1000 cm/s. By model fitting the measured carrier decay data of epiwafers with an epilayer bulk lifetime of 170 ns, S2 was determined to be about 1×10^3 to 3×10^3 cm/s while the fitted S1 ranged from 2×10^4 to 4×10^4 cm/s. S2 thus determined can be used as an index for judging the quality of 4H-SiC wafer.

    摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 碳化矽 5 2.1.1 碳化矽結構 5 2.1.2 碳化矽特性 7 2.2 4H-SiC同質磊晶製程與元件 11 2.2.1 4H-SiC同質磊晶製程(homoepitaxy) 11 2.2.2 4H-SiC磊晶缺陷與元件特性之關聯性 13 2.2.3 磊晶層缺陷量測手法 15 2.3 4H-SiC少數載子生命週期 17 2.3.1 少數載子生命週期 17 2.3.2 影響4H-SiC磊晶片少數載子生命週期的因子 19 2.3.3 Microwave Photoconductance Decay (µ-PCD) 23 2.3.4 時間解析光致發光光譜(Time-Resolved Photoluminescence , TRPL) 25 第三章 研究方法與設備 26 3.1 實驗材料 26 3.2 實驗設備 26 3.2.1 高溫爐 26 3.3 分析儀器 27 3.3.1 X光繞射儀(X-ray diffractometer, XRD) 27 3.3.2 磊晶片缺陷分析儀 28 3.3.3 時間解析光致發光光譜(Time-Resolved Photoluminescence, TRPL) 29 3.4 研究方法 31 3.4.1 過量載子衰退模型建立 32 3.4.2 磊晶片樣品的表面鈍化處理 33 第四章 結果與討論 34 4.1 碳化矽載子生命週期模擬 34 4.1.1 表面復合速率(S1)與界面復合速率(S2) 對過量載子衰退之影響模擬 34 4.1.2 4H-SiC磊晶厚度與磊晶層載子生命週期對過量載子衰退之影響模擬 38 4.2 4H-SiC磊晶片樣品缺陷分析 40 4.2.1 XRD結晶度與磊晶品質分析 40 4.2.2 4H-SiC磊晶片樣品的缺陷分佈分析 43 4.3 碳化矽磊晶片表面鈍化處理評估 46 4.4 碳化矽磊晶層載子週期分析 47 4.4.1 4H-SiC磊晶樣品之TRPL量測分析 47 4.4.2 4H-SiC磊晶樣品之S2擬合 52 第五章 結論 56 第六章 參考文獻 57

    (1) Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics 2015, 54 (4), 040103.
    (2) Myers-Ward, R. L.; Shishkin, Y.; Kordina, O.; Haselbarth, I.; Saddow, S. E. High epitaxial growth rate of 4H-SiC using horizontal hot-wall CVD. In Materials science forum, 2006; Trans Tech Publ: Vol. 527, pp 187-190.
    (3) Kimoto, T.; Niwa, H.; Okuda, T.; Saito, E.; Zhao, Y.; Asada, S.; Suda, J. Carrier lifetime and breakdown phenomena in SiC power device material. Journal of Physics D: Applied Physics 2018, 51 (36), 363001.
    (4) Galeckas, A.; Linnros, J.; Frischholz, M.; Grivickas, V. Optical characterization of excess carrier lifetime and surface recombination in 4H/6H–SiC. Applied Physics Letters 2001, 79 (3), 365-367.
    (5) Kimoto, T.; Hiyoshi, T.; Hayashi, T.; Suda, J. Impacts of recombination at the surface and in the substrate on carrier lifetimes of n-type 4H–SiC epilayers. Journal of Applied Physics 2010, 108 (8).
    (6) Izhevskyi, V.; Genova, L.; Bressiani, J.; Bressiani, A. silicon carbide. Structure, properties and processing. Cerâmica 2000, 46, 4-13.
    (7) Callister, W. D. Fundamentals of materials science and engineering; Wiley London, 2000.
    (8) Kimoto, T.; Cooper, J. A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications; John Wiley & Sons, 2014.
    (9) Matsunami, H. Technological breakthroughs in growth control of silicon carbide for high power electronic devices. Japanese journal of applied physics 2004, 43 (10R), 6835.
    (10) Hudgins, J. L.; Simin, G. S.; Santi, E.; Khan, M. A. An assessment of wide bandgap semiconductors for power devices. IEEE Transactions on power electronics 2003, 18 (3), 907-914.
    (11) Sze, S. M.; Li, Y.; Ng, K. K. Physics of semiconductor devices; John wiley & sons, 2021.
    (12) She, X.; Huang, A. Q.; Lucia, O.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Transactions on Industrial Electronics 2017, 64 (10), 8193-8205.
    (13) Kimoto, T.; Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Applied Physics Express 2020, 13 (12), 120101.
    (14) Alves, L. F.; Gomes, R. C.; Lefranc, P.; Pegado, R. d. A.; Jeannin, P.-O.; Luciano, B. A.; Rocha, F. V. SIC power devices in power electronics: An overview. In 2017 Brazilian Power Electronics Conference (COBEP), 2017; IEEE: pp 1-8.
    (15) La Via, F.; Izzo, G.; Mauceri, M.; Pistone, G.; Condorelli, G.; Perdicaro, L.; Abbondanza, G.; Calcagno, L.; Foti, G.; Crippa, D. 4H-SiC epitaxial layer growth by trichlorosilane (TCS). Journal of Crystal Growth 2008, 311 (1), 107-113.
    (16) Pedersen, H.; Leone, S.; Kordina, O.; Henry, A.; Nishizawa, S.-i.; Koshka, Y.; Janzén, E. Chloride-based CVD growth of silicon carbide for electronic applications. Chemical reviews 2012, 112 (4), 2434-2453.
    (17) Tsuchida, H.; Kamata, I.; Miyazawa, T.; Ito, M.; Zhang, X.; Nagano, M. Recent advances in 4H-SiC epitaxy for high-voltage power devices. Materials Science in Semiconductor Processing 2018, 78, 2-12.
    (18) Nakabayashi, M.; Fujimoto, T.; Katsuno, M.; Ohtani, N.; Tsuge, H.; Yashiro, H.; Aigo, T.; Hoshino, T.; Hirano, H.; Tatsumi, K. Growth of crack-free 100mm-diameter 4H-SiC crystals with low micropipe densities. In Materials Science Forum, 2009; Trans Tech Publ: Vol. 600, pp 3-6.
    (19) Neudeck, P. G.; Powell, J. A. Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Letters 1994, 15 (2), 63-65.
    (20) Muzykov, P. G.; Kennedy, R. M.; Zhang, Q. J.; Capell, C.; Burk, A.; Agarwal, A.; Sudarshan, T. S. Physical phenomena affecting performance and reliability of 4H–SiC bipolar junction transistors. Microelectronics Reliability 2009, 49 (1), 32-37.
    (21) Stahlbush, R.; VanMil, B.; Myers-Ward, R.; Lew, K.; Gaskill, D.; Eddy, C. Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions. Applied Physics Letters 2009, 94 (4).
    (22) Zhao, L. Surface defects in 4H-SiC homoepitaxial layers. Nanotechnology and Precision Engineering 2020, 3 (4), 229-234.
    (23) Das, H.; Sunkari, S.; Justice, J.; Pham, H.; Park, G.; Seo, Y. H. Statistical analysis of killer and non-killer defects in SiC and the impacts to device performance. In Materials science forum, 2020; Trans Tech Publ: Vol. 1004, pp 458-463.
    (24) Chen, P.-C.; Miao, W.-C.; Ahmed, T.; Pan, Y.-Y.; Lin, C.-L.; Chen, S.-C.; Kuo, H.-C.; Tsui, B.-Y.; Lien, D.-H. Defect inspection techniques in SiC. Nanoscale Research Letters 2022, 17 (1), 30.
    (25) Yao, Y.-Z.; Ishikawa, Y.; Sugawara, Y.; Saitoh, H.; Danno, K.; Suzuki, H.; Kawai, Y.; Shibata, N. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates. Japanese journal of applied physics 2011, 50 (7R), 075502.
    (26) Feng, G.; Suda, J.; Kimoto, T. Triple Shockley type stacking faults in 4H-SiC epilayers. Applied Physics Letters 2009, 94 (9).
    (27) Matsuhata, H.; Sugiyama, N.; Chen, B.; Yamashita, T.; Hatakeyama, T.; Sekiguchi, T. Surface defects generated by intrinsic origins on 4H-SiC epitaxial wafers observed by scanning electron microscopy. Microscopy 2017, 66 (2), 95-102.
    (28) Skowronski, M.; Ha, S. Degradation of hexagonal silicon-carbide-based bipolar devices. Journal of applied physics 2006, 99 (1).
    (29) Sze, S. M. Semiconductor devices: physics and technology; John wiley & sons, 2008.
    (30) Neamen, D. Semiconductor physics and devices; McGraw-Hill, Inc., 2002.
    (31) Danno, K.; Nakamura, D.; Kimoto, T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. Applied physics letters 2007, 90 (20).
    (32) Erlekampf, J.; Rommel, M.; Rosshirt-Lilla, K.; Kallinger, B.; Berwian, P.; Friedrich, J.; Erlbacher, T. Lifetime limiting defects in 4H-SiC epitaxial layers: The influence of substrate originated defects. Journal of Crystal Growth 2021, 560, 126033.
    (33) Okuda, T.; Kobayashi, T.; Kimoto, T.; Suda, J. Surface passivation on 4H-SiC epitaxial layers by SiO2 with POCl3 annealing. Applied Physics Express 2016, 9 (5), 051301.
    (34) Ichikawa, Y.; Ichimura, M.; Kimoto, T.; Kato, M. Passivation of surface recombination at the Si-face of 4H-SiC by acidic solutions. ECS Journal of Solid State Science and Technology 2018, 7 (8), Q127.
    (35) NONOMURA, Y.; YAMASHITA, K.; OJIMA, F.; KISHI, T.; TOKUDA, K.; KUGIMIYA, T. Evaluation System for Thin-Film Oxide Semiconductor Using μ-PCD-Effectivity of Measuring Technique.
    (36) Becker, W. Advanced time-correlated single photon counting applications; Springer, 2015.
    (37) Klein, P.; Myers-Ward, R.; Lew, K.-K.; VanMil, B.; Eddy, C.; Gaskill, D.; Shrivastava, A.; Sudarshan, T. Recombination processes controlling the carrier lifetime in n− 4H–SiC epilayers with low Z1/2 concentrations. Journal of Applied Physics 2010, 108 (3).
    (38) Kato, M.; Xinchi, Z.; Kohama, K.; Fukaya, S.; Ichimura, M. Surface recombination velocities for 4H-SiC: Temperature dependence and difference in conductivity type at several crystal faces. Journal of Applied Physics 2020, 127 (19).
    (39) Tawara, T.; Miyazawa, T.; Ryo, M.; Miyazato, M.; Fujimoto, T.; Takenaka, K.; Matsunaga, S.; Miyajima, M.; Otsuki, A.; Yonezawa, Y. Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. Journal of Applied Physics 2016, 120 (11).
    (40) Grivickas, P.; Linnros, J.; Grivickas, V. Carrier diffusion characterization in epitaxial 4H–SiC. Journal of Materials Research 2001, 16 (2), 524-528.
    (41) Kato, M.; Yoshida, A.; Ichimura, M. Estimation of surface recombination velocity from thickness dependence of carrier lifetime in n-type 4H-SiC epilayers. Japanese Journal of Applied Physics 2012, 51 (2S), 02BP12.
    (42) Lambrecht, W.; Segall, B.; Suttrop, W.; Yoganathan, M.; Devaty, R.; Choyke, W.; Edmond, J.; Powell, J.; Alouani, M. Optical reflectivity of 3C and 4H‐SiC polytypes: Theory and experiment. Applied physics letters 1993, 63 (20), 2747-2749.
    (43) Geng, W.; Yang, G.; Zhang, X.; Zhang, X.; Wang, Y.; Song, L.; Chen, P.; Zhang, Y.; Pi, X.; Yang, D. Identification of subsurface damage of 4H-SiC wafers by combining photo-chemical etching and molten-alkali etching. Journal of Semiconductors 2022, 43 (10), 102801.
    (44) Péan, E. V.; Dimitrov, S.; De Castro, C. S.; Davies, M. L. Interpreting time-resolved photoluminescence of perovskite materials. Physical Chemistry Chemical Physics 2020, 22 (48), 28345-28358.
    (45) Parola, S.; Daanoune, M.; Focsa, A.; Semmache, B.; Picard, E.; Kaminski-Cachopo, A.; Lemiti, M.; Blanc-Pélissier, D. Study of photoluminescence decay by time-correlated single photon counting for the determination of the minority-carrier lifetime in silicon. Energy Procedia 2014, 55, 121-127.
    (46) Schroder, D. K. Semiconductor material and device characterization; John Wiley & Sons, 2015.
    (47) Miyazawa, T.; Ito, M.; Tsuchida, H. Evaluation of long carrier lifetimes in thick 4H silicon carbide epitaxial layers. Applied Physics Letters 2010, 97 (20).

    QR CODE