簡易檢索 / 詳目顯示

研究生: 林柏誠
Bo-cheng Lin
論文名稱: 碘蒸氣輔助聚焦離子束蝕刻技術於氧化鎵披覆氮化鎵奈米尖錐之製作
Fabrication of oxide-capping GaN nanotips using iodine-assisted focused ion beam etching technique
指導教授: 黃柏仁
Bohr-ran Huang
口試委員: 趙良君
Liang-chun Chao
張守進
Shoou-jinn Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 氮化鎵場發射
外文關鍵詞: GaN, silver, field emission
相關次數: 點閱:354下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在探討碘蒸氣輔助聚焦離子束蝕刻製備氧化鎵披覆氮化鎵奈米尖錐及其特性分析。實驗首先以射頻式濺鍍系統沉積純銀薄膜,接著經由熱氧化方式形成雙層遮罩結構,最後使用碘蒸氣輔助聚焦離子束蝕刻製備氧化鎵披覆氮化鎵奈米尖錐。
第一層遮罩氧化銀奈米顆粒,用來保護並防止下方氧化鎵層被過度蝕刻,而氧化鎵為第二層遮罩,可有效地提升場發特性。利用控制不同的純銀薄膜厚度可以得到不同維度的奈米尖錐,而蝕刻過後,氧化銀奈米顆粒遮罩會被消耗殆盡,留下氧化鎵披覆在氮化鎵奈米尖錐頂部。
此論文的實現方面,成功地製作氮化鎵奈米尖錐結構與氧化鎵披覆氮化鎵奈米尖錐複合結構,其場發射起始電場分別為5.5 V/um,2.6 V/um,藉此發現由於電荷累積在氧化鎵奈米顆粒以及介面電子結構造成的電荷重新分佈改變了功函數,使得氧化鎵披覆氮化鎵奈米尖錐複合結構可有效地提升場發射特性。期望氧化鎵披覆氮化鎵奈米尖錐複合結構讓相關應用元件上能有效地提高效率,以提供給產業界新的材料與製程技術和方向,作為將來開發奈米結構光電元件之研究基礎。


In this study, GaN nanotip arrays were fabricated by an iodine-assisted focused ion beam etching (IAFIBE) using Ga ion mixed with iodine gas. The silver thin films were first deposited on n-GaN epilayer by the RF magnetron sputtering system, following by the thermal oxidation of Ag/GaN to form double masks, and then using iodine-assisted focused ion beam etching to fabricate GaN nanotips.
Silver oxide, which is the first mask, can be used to prevent gallium oxide from being etched seriously so that gallium oxide acting as the second mask can effectively improve the field emission properties. The tips possess different dimension, which were dependent on the thickness of silver thin film. After etching, silver oxide mask disappeared and only polycrystalline gallium oxide existed on top of GaN nanotips.
Notably, the corresponding turn-on field value for GaN nanotips without Ag cluster is 4.3V/um and the turn-on field is 2.2V/um for oxide-capping GaN nanotips. It has been found that the coated gallium oxide particles effectively improve the field emission due to the electron accumulation on the coated gallium oxide particles and the interfacial electron redistribution in the nanoscale hetero-structure which results in the shift of Fermi level and the change of work function. The fabrication of oxide-capping GaN nanotip arrays structure will be useful for future applications in related optoelectronic devices.

中文摘要........................................................................................................................ i 英文摘要....................................................................................................................... ii 誌謝.............................................................................................................................. iii 目錄.............................................................................................................................. iv 圖目錄.......................................................................................................................... vi 表目錄........................................................................................................................ viii 第一章 前言................................................................................................................. 1 第二章 基本理論與文獻回顧..................................................................................... 3 2.1 氮化鎵材料........................................................................................................ 3 2.2 氮化鎵奈米尖錐之相關研究............................................................................ 6 2.3 聚焦離子束系統.............................................................................................. 13 2.3.1 聚焦離子束技術概論........................................................................... 13 2.3.2 聚焦離子束系統簡介........................................................................... 14 2.3.3 聚焦離子束基本功能........................................................................... 16 2.4 場發射理論...................................................................................................... 21 第三章 實驗方法與步驟........................................................................................... 25 3.1 實驗流程.......................................................................................................... 25 3.2 氧化鎵披覆氮化鎵奈米尖錐之製備.............................................................. 27 3.2.1 試片清洗............................................................................................... 27 3.2.2 純銀薄膜沉積....................................................................................... 28 3.2.3 不同純銀薄膜厚度之熱氧化............................................................... 31 3.2.4 碘蒸氣輔助聚焦離子束蝕刻............................................................... 33 3.3 實驗分析儀器介紹.......................................................................................... 35 3.3.1 場發射掃描式電子顯微鏡 (FE-SEM) ............................................... 35 3.3.2 X射線繞射儀(X-ray diffraction, XRD)................................................ 35 3.3.3 穿透式電子顯微鏡 (TEM) ................................................................. 36 第四章 結果與討論................................................................................................... 37 4.1 實驗樣品.......................................................................................................... 37 4.2 熱氧化對不同純銀薄膜厚度之特性分析...................................................... 38 4.2.1 低銳角X射線繞射儀分析.................................................................. 38 4.2.2 SEM/EDX-mapping分析...................................................................... 39 4.3 不同遮罩對氧化鎵披覆氮化鎵奈米尖錐成長之影響.................................. 41 4.3.1 氧化鎵披覆氮化鎵奈米尖錐成長機制............................................... 41 4.3.2 氮化鎵奈米尖錐複合結構表面形貌分析........................................... 44 4.3.3 HR-TEM分析........................................................................................ 45 4.4 不同蝕刻時間對氧化鎵披覆氮化鎵奈米尖錐成長之影響.......................... 48 4.5 氮化鎵奈米尖錐複合結構之場發射特性分析.............................................. 49 第五章 結論與未來展望........................................................................................... 53 參考文獻..................................................................................................................... 55

[1] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, Vol. 279, pp. 208-211 (1998).
[2] X. F. Duan, Y. Huang, Y. Cui, J. Wang, L. Lauhon, K. Kim, and C.M. Lieber, “Logic gates and computation from assembled nanowire building blocks”, Science, Vol. 294, pp. 1313-1317 (2001).
[3] Y. Cui and C.M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, Vol. 291, pp. 851-853 (2001).
[4] X. F. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature, Vol. 409, pp. 66-69 (2001).
[5] T. W. Odom, J. L. Huang, P. Kim, and C.M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, Vol. 391, pp. 62-64 (1998).
[6] H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tmobler, A. Cassell, S. Fan, and M. Chapline, “Controlled chemical routes to nanotube architectures, physics, and devices”, Journal of Physical Chemistry B, Vol. 103, pp. 11246-11255 (1999).
[7] S. J. Tans, R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, Vol. 393, pp. 49-52 (1998).
[8] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions”, Science, Vol. 288, pp. 494-497(2000).
[9] P. G. Collins, M. S. Arnold, P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”, Science, Vol. 292, pp. 706-709 (2001).
[10] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, Vol. 209, pp. 1947-1949 (2001).
[11] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Advanced Functional Materials, Vol. 13, pp. 9-24 (2003).
[12] X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, Nano Letters, Vol. 3, pp. 1625-1631 (2003).
[13] Hong-Gyu Park, Fang Qian, Carl J. Barrelet, and Yat Li, “Microstadium single-nanowire laser”, Applied Physics Letters, Vol. 91, pp. 251115 (2007),.
[14] M.S. Son, S.I. Im, Y.S. Park, C.M. Park, T.W. Kang, K.-H. Yoo, “Ultraviolet photodetector based on single GaN nanorod p–n junctions”, Materials Science and Engineering C, Vol. 26, pp. 886-888 (2006).
[15] Mariano A Zimmler, Jiming Bao, Ilan Shalish,Wei Yi, Venkatesh Narayanamurti and Federico Capasso, “A two-colour heterojunction unipolar nanowire light-emitting diode by tunnel injection”, Nanotechnology, Vol. 18, pp. 395201 (2007).
[16] Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao, and D. P. Yu, “Field-emission from long SnO nanobelt arrays”, Applied Physics Letters, Vol. 85, pp. 5682-5685 (2004).
[17] T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu, and H. Asahi, “Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides”, Applied Physics Letters, Vol. 86. pp. 82109-82110 (2005).
[18] Z. Pan, H.L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. Xie, “Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties”, Advanced Materials, Vol. 12, pp. 1186-1190 (2000).
[19] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Applied Physics Letters, Vol. 75, pp. 1700-1703 (1999).
[20] R. Madar, a, G. Jacob, J. Hallaisa and R. Fruchart, “High pressure solution growth of GaN”, Journal of Crystal Growth, Vol. 31, pp. 197-203 (1975).
[21] Deborah A. Neumayer and John G. Ekerdt, “Growth of Group III Nitrides. A Review of Precursors and Techniques”, Chemistry of Materials, Vol. 8, pp. 9-25 (1996).
[22] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, Vol. R30, pp. 55-212 (2000).
[23] Kevin G. Stamplecoskie, Ling Ju, Shokouh S. Farvid and Pavle V. Radovanovic, “General Control of Transition-Metal-Doped GaN Nanowire Growth: Toward Understanding the Mechanism of Dopant Incorporation”, Nano Letters, Vol. 8, pp. 2674-2681 (2008).
[24] J.K. Jian, Cong Wang, M. Lei, Z.H. Zhang, T.M. Wang, X.L., “Quasi-horizontal GaN nanowire array network grown by sublimation sandwich technique”, Applied Surface Science, Vol. 254, pp. 6637 (2008).
[25] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, “Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells”, Nano Letters, Vol. 8, pp. 12 (2008).
[26] Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, Yun-Wei Cheng, Min-Yung Ke, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng, and JianJang Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength”, Optics Express, Vol. 16, pp. 10549-10556 (2008).
[27] Woo-Gwang Jung, Se-Hyuck Jung, Patrick Kung and Manijeh Razeghi, “Fabrication of GaN nanotubular material using MOCVD with an aluminium oxide membrane”, Nanotechnology, Vol. 17, pp. 54-59 (2006).
[28] R. Suresh, N. Venkataraman, S. Vasudevan, and K. V. Ramanathan, “Conformational Mobility in Alkyl-Chains of an Anchored Bilayer”, Journal of Physical Chemistry C, Vol. 111, pp. 495-500 (2007).
[29] D K T Ng, M H Hong, L S Tan, Y W Zhu and C H Sow, “Field emission enhancement from patterned gallium nitride nanowires”, Nanotechnology, Vol. 18, pp. 375707 (2007).
[30] Yuusuke Terada, Harumasa Yoshida, Tatsuhiro Urushido, Hideto Miyake and Kazumasa Hiramatsu, “Field Emission from GaN Self-Organized Nanotips”, Japanese Journal of Applied Physics, Vol. 41, No. 6, pp. 1194-119 (2002).
[31] Hidehiro Nishijima, Satsuki Kamo, Seiji Akita, Yoshikazu Nakayama, Ken I. Hohmura, Shige H. Yoshimura, and Kunio Takeyasu, “Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid”, Applied Physics Letters, Vol. 74, pp. 4061 (1999).
[32] Jung M Y, Kim D W and Choi S S, “Fabrication of sub-10nm Si-tip array coated with Si3N4 thin film for potential NSOM and liquid metal ion source applications”, Nanotechnology, Vol. 17, pp. 54-59 (2006).
[33] M. S. Sodha and A. Dixit, “Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons”, Applied Physics Letters, Vol. 95, pp. 101502 (2009).
[34] M.Y. Junga, D.W. Kim and S.S. Choi, “Fabrication of sub-10nm Si-tip array coated with Si3N4 thin film for potential NSOM and liquid metal ion source applications”, Microelectronic Engineering, Vol. 53, pp. 399-402 (2000).
[35] Chih-Hsun Hsu, Hung-Chun Lo, Chia-Fu Chen, Chien Ting Wu, Jih-Shang Hwang, Debajyoti Das, Jeff Tsai, Li-Chyong Chen, and Kuei-Hsien Chen, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication”, Nano Letters, Vol. 4, pp. 471-475 (2008).
[36] Hock M. Ng, Nils G. Weimann, and Aref Chowdhury, “GaN nanotip pyramids formed by anisotropic etching”, Journal of Applied Physics, Vol. 94, pp. 650-653 (2003).
[37] L. Dai, S. F. Liu, Z. X. Fu, L. P. You, J. J. Zhu, B. X. Lin, J. C. Zhang and G. G. Qin, “Synthesis of GaN nanotip triangle pyramids on 3C–SiC epilayer/Sisubstrates via an in situ In-doping technique”, Journal of Chemical Physics, Vol. 122, pp. 104713 (2005).
[38] A. A Tseng, K. Chen, CD Chen, KJ Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development,” IEEE Transactions on Electronics Packaging Manufacturing 26 (2003) 141-149.
[39] Gerlach, R. and Utlaut, M., “Focused ion beam methods of nanofabrication: room at the bottom”, Proc. SPIE Int. Soc. Opt. Eng 4510 (2001) 96.
[40] J. Melngailis, “Applications of Ion Microbeam Lithography and Direct Processing” , in Handbook of VLSI Lithography, 2nd ed. (Ed.: J. N. Helbert), Noyes, Park Ridge, NJ, pp. 791-855 (2001).
[41] Ampere A Tseng, “Recent developments in micromilling using focused ion beam technology”, Journal of Micromechanics and Microengineering, Vol. 14, pp. R15-R34 (2004).
[42] S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology”, Journal of Micromechanics and Microengineering, Vol. 11, pp. 287-300 (2001).
[43] Ampere A. Tseng, “Recent Developments in Nanofabrication Using Focused Ion Beams”, Small, Vol. 1, pp. 924-939 (2005).
[44] J. Brugger, G. Beljakovic, M. Despont, N.F. de Rooij and P. Vettiger, “Silicon Micro/Nanomechanical Device Fabrication Based on Focused Ion Beam Surface Modification and KOH Etching”, Microeleetronic Engineering, Vol. 35, (1997) 401-404.
[45] J.-F. Lin, J.P. Bird, L. Rotkina, “Low-temperature decoherence in disordered Pt nanowires”, Physica E, Vol. 19, pp. 112-116 (2003).
[46] A. Stanishevsky, “Patterning of diamond and amorphous carbon films using focused ion beams”, Thin Solid Films, Vol. 398–399, pp. 560-565 (2001).
[47] O. Groning, O. M. Kuttel, C. H. Emmenegger, P. Groning and L. Schlapbach, “Field emission properties of carbon nanotubes”, Journal of Vacuum Science and Technology, pp. 665 ( 2000).
[48] F. Paschen, Wied. Ann, p69 (1889).
[49] C. Y. Chang and S. M. Sze, ULSI technology, pp 380.
[50] S. M. Sze, VLSI Technology, pp 387.
[51] Chen, X. L et al, Modern Physics Letters B, Vol. 13, pp. 285 (1999).
[52] Z. Zhang, S. J. Wang, T. Yu, and T. Wu, “Controlling the Growth Mechanism of ZnO Nanowires by Selecting Catalysts”, Journal of Physical Chemistry C, Vol. 111, pp. 17501 (2007).
[53] Owen, E. A., Williams, G. I., Scientific Instruments, Vol. 31, pp. 49 (1999).
[54] Ahman, J., Svensson, G., Albertsson, J., Acta Crystallographica Section C, Vol. 52, pp. 1336 (1996).
[55] Brese, N. E. et al., Journal of Solid State Chemistry, Vol. 89, pp. 184 (1990).
[56] Yu-Ran Luo, “Comprehensive handbook of chemical bond energies”, 2007.
[57] Zheng Wei Pan, Zu Rong Dai, Chris Ma, and Zhong L. Wang, “Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires”, Journal of the American Chemical Society, Vol. 124, pp. 1819 (2002).
[58] L Karakaya, W.T. Thompson, “The Ag-O (Silver-Oxygen) System”, Journal of Phase Equilibria, Vol. 13, pp. 137-142 (1992).
[59] Cen-Cun Tang, Xue-Wen Xu, Long Hu, and Yang-Xian Li, “Improving field emission properties of GaN nanowires by oxide coating”, Applied Physics Letters, Vol. 94, pp. 243105 (2009)
[60] Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, and I-Nan Lin. “Electron field emission properties on UNCD coated Si-nanowires”, Diamond & Related Materials, pp. 753–757 (2008).
[61] Hyung Soo Uh, Sung Woo Ko, and Kong Duk Lee., “Growth and field emission properties of carbon nanotubes on rapid thermal annealed Ni catalyst using PECVD”, Diamond & Related Materials, pp. 850 (2005).
[62] C. Y. Zhi, X. D. Bai, and E. G. Wang., “ZnO hexagonal arrays of nanowires grown on nanorods”, Applied Physics Letters, pp. 1690 (2002).
[63] D K T Ng, M H Hong, L S Tan, Y W Zhu and H Sow, “Field emission enhancement from patterned gallium nitride nanowires ”, Nanotechnology, Vol. 18, pp. 375707 (2007).
[64] Baodan Liu, Yoshio Bando, Chengchun Tang, Fangfang Xu, Junquing Hu, and Dmitri Golberg, “ZnO hexagonal arrays of nanowires grown on nanorods”, Journal of Physical Chemistry B, Vol. 109, pp. 17083 (2005).

QR CODE