簡易檢索 / 詳目顯示

研究生: 柯建名
JIAN-MING Ko
論文名稱: 基於雲端監控之直流微電網研製及其能量配置策略
Design and Implementation of DC Microgrid Based on Cloud Monitoring and Its Electricity Allocation Strategy
指導教授: 林長華
Chang-Hua Lin
口試委員: 劉添華
Tian-Hua Liu
劉華棟
Hwa-Dong Liu
陳貽評
Yi-Ping Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 139
中文關鍵詞: 雲端系統直流微電網儲能系統削峰填谷
外文關鍵詞: Cloud system, DC microgrid, Energy storage systems, peak-cutting and valley-filling
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在將雲端技術應用於直流微電網,並以軟體即服務之概念實現一種基於雲端技術之直流微電網能量分配策略。本混合系統是由電能轉換器、電池儲能系統、無線通訊技術及雲端服務所構成的複合式系統,藉由雲端將市電、儲能系統、再生能源與直流微電網相互連接,建立一完整的直流微電網系統。其次,本系統整合多項新型雲端微服務技術,像是軟體整合平台、前端服務等,而雲端分析與決策功能則是透過獲取儲能系統、再生能源及市電即時狀態,並依尖峰釋能、離峰儲能之原則導入所提策略,同時還可依不同再生能源發電情境對子系統作相對應之決策,使直流電網中各個系統之操作模式在整體系統中作最適當的配置,最後,再透過一實際案例之降額實測,以證實本文研擬策略之可行性。

關鍵字:雲端系統、直流微電網、儲能系統、削峰填谷


This thesis aims to apply cloud technology to DC microgrid and implement a cloud-based DC microgrid energy distribution strategy with the concept of software as a service. This system comprises power converters, battery energy storage systems, wireless communication technology, and cloud services. The cloud interconnects utility power, energy storage systems, renewable energy, and DC microgrids to build a complete DC Microgrid system. Secondly, the system integrates several latest cloud micro-service technologies, such as software integration platforms, front-end services, etc. The cloud analysis and decision-making function are used to obtain the real-time status of the energy storage system, renewable energy, and utility power, then send each subsystem energy allocation according to the principle of energy release during the peak interval and energy store during the off-peak interval, which is introduced into the proposed strategy. Meanwhile, corresponding decisions can be deployed on the cloud according to different renewable energy or load situations so that each subsystem in the DC microgrid can be appropriately configured through the overall system. Finally, the feasibility of the strategy proposed in this thesis has been verified by measuring an actual case.
Keywords: Cloud system, DC microgrid, Energy storage systems, peak-cutting and valley-filling.

摘要 IV Abstract V 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文架構 5 第二章 直流微電網與雲端技術 7 2.1 直流電網技術 7 2.1.1 電能轉換器之控制 8 2.1.2 微電網之控制 10 2.2 儲能系統 11 2.2.1 鋰電池種類與規格 12 2.2.2 電池電量狀態 13 2.2.3 電池平衡技術 14 2.3 雲端技術之用途與目的 14 2.4 雲端運算模型 16 2.5 雲端設備 18 2.6 網頁技術 18 2.6.1 .MVC框架 19 2.6.2 前端技術 20 2.6.3 後端技術 22 2.7 資料庫 25 2.7.1 時間序列資料庫 26 2.7.2 ..InfluxDB 27 2.8 微服務 28 2.8.1 微服務之用途與目的 28 2.8.2 容器化 29 2.8.3 ..Docker 30 第三章 建置具雲端監控之直流微電網系統 31 3.1 整體系統架構 31 3.2 直流微電網之儲能系統 33 3.2.1 電池管理系統 33 3.2.2 電能轉換器 34 3.2.3 儲能系統管理單元 53 3.2.4 儲能管理系統之資料收集系統 54 3.2.5 儲能系統命令 58 3.3 市電及再生能源 64 3.4 直流負載 65 3.5 雲端管理系統與直流電網之連結 65 3.5.1 雲端功能架構 65 3.5.2 資料庫 66 3.5.3 雲端運算服務 68 3.5.4 前端網頁服務 68 3.5.5 雲端系統整合平台 69 3.5.6 雲端控制模式 70 第四章 案例分析:具削峰填谷策略之直流微電網系統 71 4.1 用電負載曲線說明 71 4.1.2 負載功率等比例降額說明 72 4.1.3 負載時間等比例縮短說明 73 4.2 契約容量與時間電價說明 74 4.2.1 裝置契約容量考量 74 4.2.2 時間電價參考 75 4.3 再生能源數據 76 4.4 直流電網之系統操作條件 79 4.4.1 直流微電網功率平衡原則 79 4.4.2 直流微電網各子系統輸出功率原則 80 4.4.3 儲能系統電量狀態範圍原則 81 4.4.4 儲能系統電量狀態平衡原則 81 4.4.5 直流微電網電壓範圍原則 82 4.5 削峰填谷情境 82 4.5.1 無再生能源 83 4.5.2 具再生能源 83 4.6 削峰填谷控制策略設計 84 4.6.1 削峰填谷策略執行流程說明 84 4.6.2 常見控制策略說明 85 4.6.3 所提策略一 89 4.6.4 所提策略二 90 4.6.5 不同控制策略計算結果比較 94 第五章 案例實作:具削峰填谷策略之直流微電網系統 96 5.1 系統測試平台介紹 96 5.2 前端網頁服務功能實現 97 5.2.1 直流微電網首頁 97 5.2.2 負載及各子系統能量供應曲線 98 5.2.3 儲能系統電量狀態曲線 98 5.2.4 直流微電網電壓曲線 99 5.3 削峰填谷策略之實現 99 5.3.1 常見控制策略之實測結果 99 5.3.2 所提策略一之實測結果 103 5.3.3 所提策略二之實測結果 108 5.4 削峰填谷策略結果比較 111 第六章 結論與未來研究方向 115 6.1 結論 115 6.2 未來研究方向 115 參考文獻 117

[1] 台灣經濟部能源局再生能源資訊網, “再生能源統計資料-再生能源資訊網,” [Online]. Available: https://www.re.org.tw/information/statistics.aspx.
[2] X. Chen, J. Han, Q. Zhang, and Q. Wang, “Economic Comparison of AC and DC Distribution System”, 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi’an, Oct. 2019.
[3] S. Anand and B. G. Fernandes, “Optimal Voltage Level for DC Microgrids,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, Nov. 2010.
[4] ABB,“World’s most powerful DC data center online,”. [Online]. Available: https://new.abb.com/news/detail/12816/worlds-most-powerful-dc-data-center-online
[5] G. AlLee and W. Tschudi, ‘‘Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers,’’ IEEE Power Energy Mag., vol. 10, no. 6, pp. 50–59, Nov./Dec. 2012.
[6] A. Pratt, P. Kumar, and T. V. Aldridge, ‘‘Evaluation of 400V DC distribution in telco and data centers to improve energy efficiency,’’ in Proc. 29th Int. Telecommun. Energy Conf., Rome, Italy, pp. 32–39, Oct. 2007.
[7] B. R. Blasi, “DC microgrids: review and applications,” 2013.
[8] R. K. Chauhan, F. Gonzalez-Longatt, B. S. Rajpurohit, and S.N. Singh, “DC Microgrid in Residential Buildings,” ,Institution of Engineering and Technology, pp. 367-387, April 2018.
[9] R. K. Chauhan, K. Chauhan, B. R. Subrahmanyam, A. G. Singh, and M. M. Garg, “Distributed and centralized autonomous DC microgrid for residential buildings: A case study,” Journal of Building Engineering, vol.27, pp.1-6, Oct. 2019.
[10] M. Kumar, S. C. Srivastava, and S. N. Singh, “Control Strategies of a DC Microgrid for Grid Connected and Islanded Operations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1588-1601, July 2015.
[11] R. Ghatikar, K. S. Fujita, M. A. Piette, A. Mckane, J. Han, A. Radspieler, K. C. Mares, and D. Shroyer, “Demand Response and Open Automated Demand Response Opportunities for Data Centers,” [Online]. Available: https://www.researchgate.net/publication/255215593_Demand_Response_and_Open_Automated_Demand_Response_Opportunities_for_Data_Centers.

[12] H. Dai, G. Zhao, M. Lin, J. Wu, and G. Zheng, “A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain,” IEEE Transactions on Industrial Electronics , vol. 10, no. 66, pp. 7706 - 7716, Oct. 2019.
[13] J. Dulout, B. Jammes, C. Alonso, A. Anvari-Moghaddam, A. Luna, and J. M. Guerrero, “Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems,” 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Germany, Aug. 2017.
[14] Z. Zhang, X. Cheng, Z.-Y. Lu, and D.-J. Gu, "SOC Estimation of Lithium-Ion Battery Pack Considering Balancing Current,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2216 - 2226, March 2018.
[15] C. Baumann, “Microgrids For Data Centers: Enhancing Uptime While Reducing Costs and Carbon,” . [Online]. Available: https://blog.se.com/datacenter/2020/08/12/microgrids-data-centers-enhancing-uptime-reducing-costs-and-carbon/.
[16] H. Zhang and Y. Li, “Constant voltage control on DC bus of PV system with flywheel energy storage source (FESS),” 2011 International Conference on Advanced Power System Automation and Protection, pp. 1723-1727, Beijing, 2011.
[17] A. Khorsandi, M. Ashourloo, H. Mokhtari, and R. Iravani, “Automatic droop control for a low voltage DC microgrid,” IET Generation, Transmission & Distribution, vol. 10, no. 1, pp. 41-47, July 2016.
[18] N. Hajilu, G. B. Gharehpetian, S. H. Hosseinian, M. R. Poursistani, and M. Kohansal, “Power control strategy in islanded microgrids based on VF and PQ theory using droop control of inverters,” 2015 International Congress on Electric Industry Automation (ICEIA 2015), Shiraz, 2015, pp. 37-42.
[19] X. Zhang, J. Guan, and B. Zhang, “A master slave peer to peer integration microgrid control strategy based on communication,” 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi'an, 2016, pp. 1106-1110.
[20] X. Meng, Z. Liu, J. Liu, T. Wu, S. Wang, and B. Liu, “A new master-slave based secondary control method for virtual synchronous generator,” 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016, pp. 1-6.
[21] X. Liu, P. Wang, and P. C. Loh, “A Hybrid AC/DC Microgrid and Its Coordination Control,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 278-286, June 2011.
[22] N. L. Díaz, A. C. Luna, J. C. Vasquez, and J. M. Guerrero, “Centralized Control Architecture for Coordination of Distributed Renewable Generation and Energy Storage in Islanded AC Microgrids,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5202 - 5213, July 2017.
[23] S. Wakao, H. Takano, T. Motegi, H. Nakamuira, and T. Sato; T. Yabumoto, “Computational simulation of peak cut system composed of PV power generation and storage battery,” 3rd World Conference onPhotovoltaic Energy Conversion, 2003, Osaka, May 2003.
[24] M. Nakamura, K. Kimura, and K. Takeno, “Peak-cut control of smart energy BTS: Power control technology for reducing the power consumed by base stations,” 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Oct. 2015.
[25] H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic Economic/Emission Dispatch Including PEVs for Peak Shaving and Valley Filling,” IEEE Transactions on Industrial Electronics, Vol. 66: Iss. 4, Pages 2880-2890, Yichang, June 2018.
[26] D. Zhang, S. Zhang, L. Teng, W. Kong, X. Peng, and M. Liu, “Research on a peak-cutting and valley-filling Optimal Algorithm Based on Communication Power Supply,” 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turino, Oct. 2018.
[27] Z. Shao, X.-S. Zou, X.-F. Yuan, W. Xiong, Y. Yuan, Y. Miao, Z. Tan, and Y. Xu, “Research on peak-cutting and filling technology based on flexible interconnected distribution network,” 8th Renewable Power Generation Conference (RPG 2019), Shanghai, Oct. 2019.
[28] Y. Zheng, C. Wang, and P. Ju, “Study on peak cutting and valley filling based on flexible load,” 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, June 2020.
[29] Y. Tan, M. Wen, J. Liao, C. Wang, Y. Liu, and T. Ouyang “Scheduling Strategy of Energy Storage Peak-Shaving and Valley-Filling Considering the Improvement Target of Peak-Valley Difference,” 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, Dec. 2021.
[30] J. He, J. Zhang, and H. Ma, “Design of a bi-directional full bridge LLC resonant converter with a higher normalized voltage gain under backward mode,” 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Sept. 2017.
[31] J. Zeng, G. Zhang, Samson S. Yu, Bo Zhang, and Yun Zhang, “LLC Resonant Converter Topologies and Industrial Applications - A Review,” Chinese Journal of Electrical Engineering, vol.6, no.3, Sep. 2020.
[32] 李仁豪, “可調式高壓脈衝電源供應器之模組化設計,” 台灣科技大學電機工程研究所碩士論文, 西元2019年7月.
[33] B. Guo, Y. Zhang, J. Zhang, and J. Gao, “Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control,” Journal of Power Electronics, vol. 18, no. 3, pp. 802-816, Beijing, May 2018.
[34] Z.-J. Yang, C. Wang, T. Xin, S. Lin, and R. Yang, “ Theoretical Analysis and Simulation of the Bidirectional LLC Resonant DC/DC Converter”, Journal of Power Supply, Beijing, May. 2012.
[35] H. Chang, T. Liang, and W. Yang, “Design and Implementation of Bidirectional DC-DC CLLLC Resonant Converter,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Sept. 2018.
[36] P. Mell and T. Grance. “The NIST Definition of Cloud Computing,” NIST.
[37] A. Boukerche, S. Guan, and R. E. D. Grande, “A Task-Centric Mobile Cloud-Based System to Enable Energy-Aware Efficient Offloading,” IEEE Transactions on Sustainable Computing, vol. 3, no. 4, pp. 248 - 261, Oct. 2018.
[38] S. Bera, S. Misra, and J. J. Rodrigues, “Cloud Computing Applications for Smart Grid: A Survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 5, pp. 1477 - 1494, May 2015.
[39] K. Friansa, I. Haq, B. Santi, D. Kurniadi, E. Leksono, and B. Yuliarto, “Development of Battery Monitoring System in Smart Microgrid Based on Internet of Things (IoT),” Procedia Eng.170, p. 482–487, 2017.
[40] Y.-W. Chen and J. M. Chang, “EMaaS: Cloud-Based Energy Management Service for Distributed Renewable Energy Integration,” IEEE Transactions on Smart Grid , vol. 6, no. 6, pp. 2816 - 2824, Nov. 2015.
[41] L. Yu, T. Jiang, and Y. Zou, “Real-Time Energy Management for Cloud Data Centers in Smart Microgrids,” IEEE Access, vol. 4, pp. 941 - 950, March 2016.
[42] P. Mell and T. Grance, “Effectively and Securely Using the Cloud Computing Paradigm”. NIST Information Technology Laboratory, 2010.
[43] M. Armbrust, A. Fox, Rean Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing”, Communications of the ACM, Vol. 53 No. 4, Pages 50-58, April 2010.
[44] Tutorialspoint, “Basic MVC Architecture,” 2016. [Online] .Available: http://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm.
[45] W3C, “HTML 4.01 Specification.” [Online]. Available: http://www.w3.org/TR/html4.
[46] W3C, “What is CSS?”. [Online] .Available: https://www.w3.org/standards/webdesign/htmlcss#whatcss.
[47] ECMA, “Standard ECMA-262 Javascript Specification.” [Online]. Available: https://www.ecma-international.org/publications/standards/Ecma-262.htm.
[48] Skedler, “Everything You Need to Know about Grafana,” [Online]. Available:
https://www.skedler.com/blog/everything-you-need-to-know-about-grafana/
[49] Node.js, “About node.js,” [Online]. Available: https://nodejs.org/en/about/.
[50] Node-RED, “Node-RED,” [Online]. Available: https://nodered.org/.
[51] MQTT, “ MQTT: The Standard for IoT Messaging,” [Online]. Available:
https://mqtt.org/
[52] EDUCBA, “RabbitMQ vs MQTT | Top 7 Amazing Differences You Should Know ,” [Online]. Available: https://www.educba.com/rabbitmq-vs-mqtt/
[53] Eclipse Mosquito, ” An open source MQTT broker,” [Online]. Available: https://mosquitto.org/
[54] E. Codds, “A relational model of data for large shared data banks,” 1970.
[55] K. Rudolph, “A Comparison of NoSQL Time Series Databases”, 2015.
[56] InfluxDB,” InfluxDB Markedly Outperforms OpenTSDB in Time Series Data & Metrics Benchmark,” [Online]. Available: https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-benchmark/.
[57] InfulxDB, “InfluxDB line protocol reference | InfluxDB OSS 1.8 Documentation,” [Online]. Available: https://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_reference/.
[58] K. Gos, and W. Zabierowski, “The Comparison of Microservice and Monolithic Architecture,” 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Ukraine, April 2020.
[59] Z. Li, “Comparison between common virtualization solutions: VMware Workstation, Hyper-V and Docker,” 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, SC, USA, Nov. 2021.
[60] Dokcer, “What is a container?” [Online]. Available: https://www.docker.com/resources/what-container/
[61] Slintel, ” Docker - Market Share, Competitor Insights in Containerization,” [Online]. Available: https://www.slintel.com/tech/containerization/docker-market-share.
[62] Docker, “Docker overview” [Online]. Available: https://docs.docker.com/get-started/overview/.
[63] W. Cha, J. Kwon, and B. Kwon, “Highly Efficient Asymmetrical PWM Full-Bridge Converter for Renewable Energy Sources,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2945-2953, May 2016.
[64] The Modbus Organization, ‘‘Modbus Application Protocol Specification,’’ V1.1b3, Retrieved March 31, 2009.
[65] The Modbus Organization, ‘‘MODBUS over serial line specification and implementation guide.’’ V1.02, Retrieved Dec. 20, 2006
[66] S. M. Frank, and P. K. Sen, “Estimation of electricity consumption in commercial buildings,” 2011 North American Power Symposium, Boston, Aug. 2011.
[67] 王俊昇, ”基於雲端管理之分散式儲能系統設計與實現,” 台灣科技大學電機工程研究所碩士論文, 西元2021年1月.
[68] L. A. Wong, V. K. Ramachandaramurthy, S. L. Walker, and J. B. Ekanayake, “Optimal Placement and Sizing of Battery Energy Storage System Considering the Duck Curve Phenomenon,” IEEE Access, vol. 8, pp. 197236–197248, 2020.
[69] 台灣電力公司, “電力供需資訊-今日備轉容量率,” [Online]. Available: https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=405&cchk=e1726094-d08c-431e-abee-05665ab1c974.
[70] 台灣電力公司, “電價表,” 107年6月26日. [Online], Available: https://www.taipower.com.tw/upload/238/2021101315451523922.pdf.
[71] 台灣電力公司, “電力供需資訊-今日用電曲線(能源別),” [Online], Available: https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=404&cchk=8ccc1918-8cae-4f40-a2d0-b43454f4f218.
[72] “IEEE Guide for the Interoperability of Energy Storage Systems Integrated with the Electric Power Infrastructure,” IEEE Standards Coordinating Committee 21.

無法下載圖示 全文公開日期 2025/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2120/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE