簡易檢索 / 詳目顯示

研究生: 陳霈潔
Pei-Chieh Chen
論文名稱: 應用於幾何誤差量測之循環式光柵干涉儀開發
Development of a Cyclic Grating Interferometer for Geometric Errors Measurement
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
林鼎晸
Ding-Zheng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 138
中文關鍵詞: 循環式光柵干涉儀五自由度位移旋轉角幾何誤差
外文關鍵詞: Cyclic, Grating interferometer, Five-degree-of-freedom, Displacement, Rotation angle, Geometric errors
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,精密機械業對於能提供高精度的量測設備需求正逐年攀升,透過具備優異量測性能的量測設備對工具機台進行位移、旋轉角和幾何誤差量測與校正,以維持高製造精度。然而,大多數的量測設備無法同時提供多自由度的位移或旋轉角度的量測資訊,即無法準確地量測被測物體在各個自由度上的運動狀態或偏差。
    本論文開發一套創新的「循環式光柵干涉儀」,可用以進行精密位移(x, z)及旋轉角度(θx, θy, θz)量測,具備優異的幾何誤差量測能力。此套系統是以「循環式」光路做為技術核心進行開發,當外界環境存在擾動時,其擾動量將於干涉訊號中相互抵消,能有效提升系統的穩定性。於此同時,此套獨特的「循環式」光路亦能克服常見光柵干涉儀無法進行面外位移量測之缺點,經干涉訊號的加減運算後,即能使干涉儀於單一偵測架構下即具備雙軸向(x, z)位移之量測能力;透過「雙繞射式」光路設計,使繞射光束兩次入射至光柵元件,藉此引入兩倍的相位變化量,可有效提升系統的靈敏度及解析度;藉由「共面偵測式」光路設計,建構出三組偵測架構,每組偵測架構皆具備面內(x)與面外(z)位移的量測能力,由各偵測架構之間所獲得的位移量測結果的比對,即可進一步回推待測光柵於三軸向(θx, θy, θz)的旋轉角度變化量。如此,即能使系統在不改變光學架構的情況下,進行幾何誤差量測。
    由實驗結果可知,此套「循環式光柵干涉儀」可同時提供雙軸向(x, z)位移、三軸向(θx, θy, θz)旋轉角度及幾何誤差量測資訊,其於各軸向位移及旋轉角度的解析度分別為1.2 nm、1.5 nm、14.6 nrad、25 nrad及16.5 nrad;重現性分別優於1.9 nm、2.4 nm、10.3 nrad、10.8 nrad及9.5 nrad。此外,此套系統於30分鐘的量測穩定度亦分別優於16.7 nm、36.4 nm、590 nrad、722 nrad及494 nrad。由上述的量測結果證明此套「循環式光柵干涉儀」具備優異的量測性能,日後可廣泛應用於各式需進行位移、旋轉角度及幾何誤差量測之場合中。


    In recent years, the demand for high-precision measurement equipment in the precision machinery industry are increasing year by year. Measurements of displacement, rotation angle or geometric error for machine tools are carried out through the measurement equipment with excellent measurement performance to maintain high manufacturing accuracy. However, most measurement equipment cannot provide measurement information of displacement or rotation angle of multiple degrees of freedom simultaneously, that is, cannot accurately measure the motion state or deviation of the measured object in each degree of freedom.
    In this thesis, an innovative cyclic grating interferometer is developed for precise displacement (x, z), rotation angle (θx, θy, θz) and geometric error measurements. The proposed system is developed with a “cyclic optical path” as the core technology, therefore, when there are disturbances in the external environment, the disturbances would be canceled in the interference signal, which can effectively improve the stability of the proposed system. Meanwhile, the proposed “cyclic optical path” can also overcome the shortcomings of common grating interferometers that cannot perform out-of-plane displacement measurement. After the addition and subtraction of the interference signals, the proposed interferometer is able to measure biaxial (x, z) displacements under a single detection configuration. Moreover, through a “double diffraction optical path” design, the corresponding diffraction beams are incident on the grating twice, thereby introducing double amount of phase change, which can enhance the measurement sensitivity and resolution of the system. Meanwhile, through the design concept of coplanar detection configuration, each set of detection configuration has the ability to measure in-plane (x) and out-of-plane (z) displacements simultaneously. By comparing the measurement results obtained between the detection configurations, the rotation angle variation of the grating to be measured in the three axes (θx, θy, θz) can be further obtained. In this way, the proposed system has the ability to measure geometric errors without changing the optical configuration.
    It can be seen from the experimental results that this set of “cyclic grating interferometer” can simultaneously provide biaxial displacement (x, z), triaxial rotation angle (θx, θy, θz) and geometric errors measurement information. The measurement resolution of displacement and rotation angle in each axis (x, z, θx, θy, θz) is 1.2 nm, 1.5 nm, 14.6 nrad, 25 nrad and 16.5 nrad while the measurement reproducibility is better than 1.9 nm and 2.4 nm, 10.3 nrad, 10.8 nrad and 9.5 nrad. In addition, the measurement stability of this system in 30 minutes is better than 16.7 nm, 36.4 nm, 590 nrad, 722 nrad and 494 nrad, respectively. The measurement results demonstrate that the proposed cyclic grating interferometer has excellent measurement performance and can be widely used in various occasions where displacement, rotation angle and geometric errors measurements are required in the future.

    摘要 I Abstract III 致謝 V 符號說明 VI 目錄 X 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 外差式雷射干涉儀之文獻回顧 4 1.2.2 循環式雷射干涉儀之文獻回顧 10 1.2.3 光柵式雷射干涉儀之文獻回顧 16 1.2.4 多繞射式光柵干涉儀之文獻回顧 21 1.3 研究目的 25 1.4 論文架構 26 第二章 基礎理論 28 2.1 外差干涉術 28 2.1.1 旋轉波片調制技術 30 2.1.2 弦波調制技術 32 2.1.3 賽曼雷射調制技術 34 2.1.4 聲光調制技術 36 2.1.5 電光調制技術 38 2.1.6 波長調制技術 40 2.2 循環式雷射干涉儀 43 2.3 光柵干涉技術 45 2.3.1 都卜勒移頻效應 46 2.3.2 外差式光柵干涉儀 47 2.3.3 雙繞射式外差光柵干涉儀 50 2.4 Littrow式外差光柵干涉儀 52 2.5 幾何誤差基礎原理 54 2.6 小結 55 第三章 研究方法 57 3.1 雙自由度循環式光柵干涉儀 57 3.2 五自由度循環式光柵干涉儀 62 3.3 相位解調模組開發 70 3.4 光機模組 71 3.5 系統元件及實驗儀器介紹 74 3.6 小結 76 第四章 性能驗證與探討 77 4.1 雙自由度位移(x, z)量測實驗 77 4.2 五自由度位移(x, z)及旋轉角度(θx, θy, θz)量測實驗 82 4.2.1 200 μm位移及800 μrad旋轉角度運動量測實驗 83 4.2.2 2 μm位移及8 μrad旋轉角度運動量測實驗 86 4.2.3 20 nm位移及 80nrad旋轉角度運動量測實驗 89 4.3 系統性能測試與討論 92 4.3.1 解析度量測實驗 92 4.3.2 重現性量測實驗 98 4.3.3 隨機運動量測實驗 101 4.3.4 雙軸位移運動量測實驗 104 4.3.5 幾何誤差量測實驗 106 4.3.6 穩定度量測實驗 107 4.3.7 靈敏度量測實驗 108 4.3.8 量測速度極限實驗 110 4.4 小結 112 第五章 誤差分析 113 5.1 系統誤差 113 5.1.1 光柵製造週期誤差 114 5.1.2 偏振元件製造誤差之影響 115 5.1.3 光柵對位誤差之影響 119 5.1.4 偏振元件對位誤差之影響 120 5.1.5 光源方位角偏差之影響 124 5.2 隨機誤差 126 5.2.1 外界環境振動 127 5.2.2 材料之熱膨脹係數之影響 129 5.2.3 電子雜訊 130 5.3 小結 130 第六章 結論與未來展望 131 6.1 結論 131 6.2 未來展望 133 參考文獻 134

    [1] A. A. Michelson, “The relative motion of the Earth and the Luminiferous ether,” Am. J. Sci. 22(128), pp. 120, (1881).
    [2] X. Lei, X. Dong, T. Sun and K. T. V. Grattan, “Ultrasensitive refractive index sensor based on Mach-Zehnder interferometer and a 40 μm fiber,” J. Lightwave Technol. 39(17), pp. 5625-5633, (2021).
    [3] K. Zhang, O. Sasaki, S. Choi, S. Luo, T. Suzuki and J. Pu, “Measurement of phase refractive index directly from phase distributions detected with a spectrally resolved interferometer,” Appl. Opt. 60(31), pp. 10009-10015, (2021).
    [4] S. T. Lin, S. L. Yeh and X. H. Trinh, “Low-coherence phase-shifting shearing interferometer for measuring parallelism of parallel surfaces of transparent samples,” Opt. Laser Technol. 127, (2020).
    [5] D. Bian, K. N. Joo, Y. Lu and L. d. Yu, “Spherical wavefront measurement on modified cyclic radial shearing interferometry,” Opt. Express 29(23), pp. 38347-38358, (2021).
    [6] Y. Xue, Y. Chen, Y. Yang and J. Bai, “Point diffraction interferometer based on a silicon nitride waveguide spherical wave source,” Appl. Opt. 61(20), pp. 5850-5858, (2022).
    [7] Y. Lou, L. Yan, B. Chen and S. Zhang, “Laser homodyne straight interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25(6), pp. 6805-6821, (2017).
    [8] Y. Hori, S. Gonda, Y. Bitou, A. Watanabe and K. Nakamura, “Periodic error evaluation system for laser encoders using a homodyne laser interferometer with 10 picometer uncertainty,” Precis. Eng. 51, pp. 388-392, (2018).
    [9] Š. Řeřucha, M. Holá, M. Šarbort, J. Hrabina, J. Oulehla and O. Číp, “Compact differential plane interferometer with in-axis mirror tilt detection,” Opt. Lasers Eng. 141, pp. 106568, (2021).
    [10] Y. Cai, L. Wang, Y. Liu, C. Li and K. C. Fan, “Accuracy improvement of linear stages using on-machine geometric error measurement system and error transformation model,” Opt. Express 30(5), pp. 7539-7550, (2022).
    [11] S. Yokoyama, Y. Hori, T. Yokoyama and A. Hirai, “A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error,” Precis. Eng. 54, (2018).
    [12] T. D. Nguyen, Q. A. Duong, M. Higuchi, T. T. Vu, D. Wei and M. Aketagawa, “19-picometer mechanical step displacement measurement using heterodyne interferometer with phase-locked loop and piezoelectric driving flexure-stage,” Sens. Actuator A Phys. 304, pp. 111880, (2020).
    [13] Y. Le, S. Jin and T. Jin, “Simple heterodyne interferometer using a polarizing beam displacer,” Opt. Lett. 46(9), pp. 2015-2018, (2021).
    [14] X. Wang, J. Su, J. Yang, L. Miao and T. Huang, “Modified homodyne laser interferometer based on phase modulation for simultaneously measuring displacement and angle,” Appl. Opt. 60(16), pp.4647-4653, (2021).
    [15] B. Chen, L. Cheng, L. Yan, E. Zhang and Y. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 80(035114), pp. 206-211, (2017).
    [16] E. Zhang, B. Chen, H. Zheng, L. Yan and X. Teng, “Laser heterodyne interferometer with rotational error compensation for precision dispacement measurement,” Opt. Express 26(18), pp. 90-98, (2018).
    [17] P. Jia, B. Zhang, Q. Feng and F. Zheng, “Simultaneous measurement of 6DOF motion errors of linear guides of CNC machine tools using different modes,” Sensors 20(3439), (2020).
    [18] G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” C. R. 157, pp. 708-710, (1913).
    [19] I. Kudelin, S. Sugavanam and M. Chernysheva, “Rotation active sensors based on ultrafast fibre lasers,” Sensors 21(3530), (2021).
    [20] R. Montonen, I. Kassamakov, P. Lehmann, K. Österberg and E. Hæggström, “Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer,” Opt. Lett. 43(4), pp. 887-880, (2018).
    [21] H. S. Hernández, B. B. Medina, A. M. Nuñez, J. L. Flores, G. G. Torales and O. Pottiez, “All-POF coupling ratio-imbalanced Sagnac interferometer as a refractive index sensor,” Appl. Opt. 60(24), pp. 7145-7151, (2021).
    [22] M. T. L. Hsu, I. C. M. Littler, D. A. Shaddock and J. Herrmann, “Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters,” Opt. Lett. 35(24), pp. 4202-4204, (2010).
    [23] C. E. Lin, C. J. Yu, “Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration,” Opt. Express 21(8), pp. 9947-9958, (2013).
    [24] V. C. P. Kumar, C. Joenathan, A. Ganesan and U. Somasundram, “Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple reflections,” Opt. Eng. 55(8), pp.084103, (2016).
    [25] R. Wei, L. Di, N. Qiao and S. Chen, “W-shape common-path interferometer,” Appl. Opt. 59(34), pp. 10973-10979, (2020).
    [26] T. Nuntakulkaisak, Y. Infashsaeng, R. Bavontaweepanya and E. Pongophas, “The signal calibration from a Sagnac polarized standing wave interferometer for displacement measurement,” J. Phys. 1719(012047), (2021).
    [27] A. Uaman, A. Bhatranand, Y. Jiraraksopakum and R. Kaewon, “Real-time double-layer thin film thickness measurements using modified sagnac interferometer with polarization phase shifting approach,” Photonics 8(529), pp. 1-13, (2021).
    [28] K. Nakhoda, L. Huang, T. Wang, D. Kuhne, J. Porter, M. Idir and C. Joenathan, “Compact instantaneous phase-shifting Sagnac interferometer for nanoscale tilt measurement,” Opt. Laser Technol. 153(108168), (2022).
    [29] Y. C. Chung, K. C. Fan and B. C. Lee, “Development of a Novel Planar Encoder for 2D Displacement Measurement in Nanometer Resolution and Accuracy,” Proc. IEEE, pp. 499-453, (2011).
    [30] F. Cheng and K. C. Fan, “High-precision angle measurement based on michelson interferometry,” Phys. Procedia 19, pp.3-8, (2011).
    [31] F. Yang, M. Zhang, Y. Zhu, W. Ye, L. Wang and Y. Xia, “Two degree-of freedom fiber-coupled heterodyne grating interferometer with milli-radian operating range of rotation,” Sensors 19(3219), pp.1-10, (2019).
    [32] Y. Yin, Z. Liu, S. Jiang, W. Wang, H. Yu, W. Li and Jiaigalantu, “Grating-based 2D displacement with quadruple optical subdivision of a single incident beam,” Opt. Express 25(15), pp. 24169-24181, (2021).
    [33] H. L. Hsieh and S. W. Pan, “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Opt. Express 23(3), pp. 2451-2465, (2015).
    [34] K. Yu, J. Zhu, W. Yuan, Q. Zhou, G. Xue, G. Wu, X. Wang and X. Li, “Two-channel six degree of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics,” Opt. Express 29(14), pp. 21113-21128, (2021).
    [35] C. C. Hsu, H. Chen, H. Y. Tseng, S. C. Lan and J. Lin, “High displacement resolution encoder by using triple grating combination interferometer,” Opt. Laser Technol. 105, pp. 221-228, (2018).
    [36] J. Deng, X. Yan, C. Wei, Y. Lu, M. Li, X. Xiang, W. Jia and C. Zhou, “Eightfold optical encoder with high-density grating,” Appl. Opt. 57(10), pp. 2366-2375, (2018).
    [37] W. Ye, M. Zhang, Y. Zhu, L. Wang, J. Hu, X. Li and C. Hu, “Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner,” Opt. Express 26(26), pp. 34734-34752, (2018).
    [38] D. Chang, X. Xing, P. Hu, J. Wang and J. Tan, “Double-diffracted spatially separated heterodyne grating interferometer and analysis on its alignment tolerance,” Appl. Sci. 263, pp. 1-13, (2019).
    [39] Y. Li and G. Eichmann, “Multipass counterrotating wave-plate frequency shifters for heterodyne interferometry,” Opt. Lett. 11(11), pp. 718-720, (1986).
    [40] M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9(8), pp. 319-321, (1984).
    [41] 賴宗德,「弦波調制雙繞射光柵干涉儀用於位移及角度量測之開發」,碩士學位論文,國立臺灣科技大學,2019。
    [42] P. Zeeman, “The Effect of Magnetization on the Nature of Light Emitted by a Substance,” Nature 55(347), (1897).
    [43] A. Weis and S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27(13), pp. 2662-2665, (1988).
    [44] R. A. Sprague and C. L. Kolopoulos, “Time integrating acoustooptic correlator,” Appl. Opt. 15(1), pp. 89-92, (1976).
    [45] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(063112), (2005).
    [46] D. C. Su, M. H. Chiu and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18(2-3), pp. 161-163 (1996).
    [47] J. Y. Lee and G. A. Jiang, “Displacement using a wavelength-phase-shifting grating interferometer,” Opt. Express 21(21), pp. 25553-25564, (2013).
    [48] J. Y. Lee, H. Y. Chen, C. C. Hsu and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sens. Actuator A Phys. 137, pp. 185-191, (2007).
    [49] A. J. Liang, P. Y. He, H. L. Hsieh, “Symmetrical diffraction laser encoder,” Proc. SPIE 10678, (2018).
    [50] P. J. Groot, V. G. Badami and J. Liesener, “Concepts and geometries for the next generation of precision heterodyne optical encoders,” ASPE 65, pp. 146-149, (2016).
    [51] P. Wu, Z. Yang, X. Wang and Z. Zhang, “Two-dimensional encoder with independent in-plane and out-of-plane detection for nanometric measurement,” Opt. Lett. 45(15), pp. 4200-4203, (2020).
    [52] J. R. Chen, B. L. Ho, H. W. Lee, S. P. Pan and T. H. Hsieh, “Research on geometric errors measurement of machine tools using auto-tracking laser interferometer,” World J. Eng. 6(63039), pp. 631-636, (2018).
    [53] H. L. Hsieh and S. W. Pan, “Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry,” Appl. Opt. 52(27), pp. 6840-6848, (2013).
    [54] H. L. Hsieh and W. Chen, “Heterodyne Wollaston laser encoder for measurement of in-plane displacement,” Opt. Express 24(8), pp. 8693-8707, (2016).
    [55] D. M. Guo, M. Wang and H. Hao, “Displacement measurement using a laser feedback grating interferometer,” Appl. Opt. 54(31), pp. 9320-9325, (2015).
    [56] N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), pp. 907-926, (1993).
    [57] J. Y. Lee, H. L. Hsieh, G. Lerondel, R. Deturche, M. P. Lu, and J. C. Chen, “Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement,” Appl. Opt. 50(9), pp. 1272-1279, (2011).
    [58] C. H. Liu and C. H. Cheng, “Development of a grating based multi-degree-of-freedom laser linear encoder using diffracted light,” Sens. Actuator A Phys. 181, pp.87-93, (2012).
    [59] A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar grating for stage motion measurement,” Precis. Eng. 36(4), pp. 576-585, (2012).
    [60] Q. Lv, Z. W. Liu, W. Wang, X. T. Li, S. Li, Y. Song, H. Z. Yu, Bayaneshig and W. H. Li, “Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement,” Appl. Opt. 57(31), pp. 9455-9463, (2018).

    無法下載圖示 全文公開日期 2029/09/20 (校內網路)
    全文公開日期 2029/09/20 (校外網路)
    全文公開日期 2029/09/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE