簡易檢索 / 詳目顯示

研究生: 謝忠宇
Chung-Yu Hsieh
論文名稱: 高中職生在機器人課程中的設計思維、二十一世紀關鍵能力與機器人學習自我效能之相關研究
Relationships among Students’ Design Thinking, 21st century abilities, and Robotics Learning Self-Efficacy in the Robotics Curriculum
指導教授: 蔡孟蓉
Meng-Jung Tsai
口試委員: 蔡今中
Chin-Cung Tsai
許衷源
Chung-Yuan Hsu
梁至中
Jyh-Chong Liang
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 機器人課程設計思維二十一世紀關鍵能力機器人學習自我效能
外文關鍵詞: robotics curriculum, design thinking, 21st century abilities, robotics learning self-efficacy
相關次數: 點閱:376下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探究高中職學生在機器人課程中設計思維、二十一世紀關鍵能力和機器人學習自我效能間之關聯性,以及瞭解設計思維與二十一世紀關鍵能力分別對於機器人學習自我效能之預測力。研究對象以立意取樣的方式選取新北市某一私立高中156名已具有修習機器人課程經驗之高中職學生。本研究採用問卷調查法,利用設計思維量表、二十一世紀關鍵能力量表,以及機器人學習自我學習效能量表進行問卷資料蒐集。本研究收集之問卷資料利用描述性統計、皮爾森積差相關分析與逐步迴歸分析等方法進行分析。根據分析結果得知,學生的設計思維、二十一世紀關鍵能力及機器人學習自我效能變項兩兩之間皆有顯著且正向的關聯性。此外,設計思維中的原型、同理心、發想等三個子構面可以顯著地預測機器人學習自我效能;而二十一世紀關鍵能力中的複雜問題解決能力與創新創造力兩個子構面亦可顯著地預測機器人學習自我效能;最後,設計思維中的原型和同理心兩個子構面,以及二十一世紀關鍵能力中的複雜問題解決能力和批判性思考能力兩個子構面可同時顯著預測機器人學習自我效能。


    This study aims to explore the relationships among students’ design thinking, 21st century abilities, and robotics learning self-efficacy in the robotics curriculum. Also, this study examined the predictions of design thinking and 21st century abilities toward robotics learning self-efficacy respectively. The participants consisted of 156 high school and vocational students who had learning experiences of robotics curricula. A design thinking scale, a 21st century abilities scale, and a robotics learning self-efficacy scale were used for collecting the needed data. The descriptive statistics, Pearson’s correlation analysis, and stepwise regression analysis were also conducted in this study. Results of this study show that students’ design thinking, 21st century abilities, and robotics learning self-efficacy had significant and positive relationships with each other. Moreover, three sub-factors of design thinking, prototype, empathy, and ideate, can significantly predict robotics learning self-efficacy. Furthermore, two sub-factors of 21st century abilities, complex problem-solving ability and creativity, can significantly predict robotics learning self-efficacy. Finally, the prototype and the empathy of design thinking as well as the complex problem-solving and the critical thinking abilities of 21st century abilities can significantly predict robotics learning self-efficacy.

    目錄 V 圖表索引 VII 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究限制 3 第四節 名詞解釋 4 第貳章 文獻探討 6 第一節 機器人課程 6 第二節 設計思維 7 第三節 二十一世紀關鍵能力 10 第四節 機器人學習自我效能 15 第參章 研究方法 17 第一節 研究架構 17 第二節 研究設計 18 第三節 資料蒐集與分析 23 第肆章 研究結果 25 第一節 描述性統計 25 第二節 相關分析 27 第三節 迴歸分析 31 第伍章 結論與討論 39 第一節 研究結果與討論 39 第二節 未來建議 43 參考文獻 45 中文部分 45 英文部分 48

    中文部分
    王裕德、陳元泰、曾鈴惠 (2012)。機器人問題導向程式設計課程對女高中學生學習程式設計影響之研究。科學教育月刊,354,11-29。http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/7858
    江美惠 (2005)。創造性問題解決教學方案對資優學生創造力及問題解決能力影響之研究。資優教育研究,5(2),83-106。doi: 10.7089/JGE.200512.0083
    李登隆、王美芬 (2004)。資訊融入專題導向學習對國小學生自然科學習態度與問題解決能力之影響。科學教育研究與發展季刊,69-94。http://163.21.239.16/dspace/handle/987654321/1362
    李佳穎 (2019)。利用合作問題解決鷹架於STEM機器人課程中對運算思維和程式編程自我效能之影響 (未出版之碩士論文)。國立臺灣科技大學,臺北市。
    邱惠柔、林維彥、蔡孟蓉 (2013)。樂高機器人課程對於科學學習動機之影響。論文發表於第九屆臺灣數位學習發展研討會,(TWELF 2013),臺中市。
    周芬美、段曉林 (2019)。以自我效能激發策略融入STEM統整活動對國中學生STEM學習效能之探討。科技與人力教育季刊,5(4),26-49。doi: DOI: 10.6587/JTHRE.201906_5(4).0002
    胡博閔 (2010)。數位遊戲學習對學童創造力與實作技能影響之研究 (碩士論文)。臺灣師範大學科技應用與人力資源發展學系學位論文,1-150.
    胡淑華、蔡孟蓉 (2019)。國中機器人STEAM跨領域課程發展研究:以彰化縣二水國中培龍計畫為例。數位學習科技期刊,11(4),51-75。doi: 10.3966/2071260X2019101104003
    徐柏棻、蔡孟蓉 (2014)。學習風格與電子書設計對學習LEGO機器人程式設計之影響。論文發表於第十屆臺灣數位學習發展研討會 (TWELF 2014),臺北市。
    徐新逸、項志偉 (2016)。翻轉教室融入國小六年級資訊課程對批判性思考能力之影響。課程與教學,19(4),23-60。doi: 10.6384/CIQ.201610_19(4).0002
    張俊彥、翁玉華 (2000)。我國高一學生的問題解決能力與其科學過程技能之相關性研究。科學教育學刊,8(1),35-55。doi: 10.6173/CJSE.2000.0801.02
    張鈿富 (2009)。歐美澳公民關鍵能力發展之研究。台北市:國立教育資料館。
    張鈿富、吳慧子、吳舒靜 (2010)。 歐盟、美、澳「公民關鍵能力」發展及其啟示。台北市:國立教育資料館。
    教育部 (1995)。高級中學課程標準。台北市:教育部。
    教育部 (2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校-科技領域,台北市:教育部。
    黃子瓔 (2010)。從3R到4C:淺談21世紀能力的發展與趨勢。數位典藏與學習電子報。取自http://newsletter。teldap。tw/news/NewsContent。php?nid=4112&lid=466
    溫明麗 (2012)。批判性思考與教學-對話、解放與重建。臺灣教育,675,2-8。
    趙貞怡 (2013)。原住民學童在電腦樂高機器人課程中的創造力與團隊合作能力。教育實踐與研究,26(1),33-62。
    趙嘉浩、梁至中、蔡孟蓉 (2017)。機器人課程教材鷹架對高中生未來關鍵學習能力的影響。數位學習科技期刊,9(3),95-114。doi: 10.3966/2071260X2017070903005
    謝佩芯 (2012)。個人設計思考力與團隊創造力之關係以綠色產學活動為例。藝術學報,90,69-88。doi: 10.6793/JNTCA.201204.0069  

    英文部分
    American Association for the Advancement of Science. (1994). Benchmarks for science literacy. Oxford University Press.
    Ananiadou, K. and M. Claro (2009). 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Education Working Papers, No. 41, OECD Publishing. doi: 10.1787/218525261154
    Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How does the degree of guidance support students’ metacognitive and problem solving skills in educational robotics? Journal of Science Education and Technology, 27(1), 70-85. doi: 10.1007/s10956-017-9709-x
    Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
    Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. Cognitive domain.
    Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of research on technology in education, 39(3), 229-243. doi: 10.1080/15391523.2007.10782481
    Bloom, B. S. (1966). Stability and change in human characteristics: Implications for school reorganization. Educational Administration Quarterly, 2(1), 35-49. doi: 10.1177/0013161X6600200103
    Beligatamulla, G., Rieger, J., Franz, J., & Strickfaden, M. (2019). Making pedagogic sense of design thinking in the higher education context. Open Education Studies, 1(1), 91-105. doi: 10.1515/edu-2019-0006
    Brown, T. (2005). Strategy by design. Fast Company, 95, 52-54.
    Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
    Champagne, A. B., & Klopfer, L. E. (1977). A sixty-year perspective on three issues in science education: I. Whose ideas are dominant? II. Representation of women. III. Reflective thinking and problem solving. Science Education, 61(4), 431-52. doi: 10.1002/sce.3730610402
    Chiappetta, E. L., & Russell, J. M. (1982). The relationship among logical thinking, problem solving instruction, and knowledge and application of earth science subject matter. Science Education, 66, 85-93. doi: 10.1002/sce.3730660111
    Caprara, G. V., Fida, R., Vecchione, M., Del Bove, G., Vecchio, G. M., Barbaranelli, C., & Bandura, A. (2008). Longitudinal analysis of the role of perceived self-efficacy for self-regulated learning in academic continuance and achievement. Journal of educational psychology, 100(3), 525. doi: 10.1037/0022-0663.100.3.525
    Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how students learn, 20(2010), 51-76.
    Dewey, J. (1997). How we think. Courier Corporation.
    Eteokleous, N., Nisiforou, E., Christodoulou, C., Liu, L., & Gibson, D. (2018). Fostering Children's Creative Thinking: A Pioneer Educational Robotics Curriculum. In Research Highlights in Technology and Teachers Education 2018 (pp. 89-98). AACE–Association for the Advancement of Computing in Education.
    Garver, E. (1987). Good arguments: An introduction to critical thinking. Teaching Philosophy, 10(4), 366-367.
    Geban, Ö., Askar, P., & Özkan, Ï. (1992). Effects of computer simulations and problem-solving approaches on high school students. The Journal of Educational Research, 86(1), 5-10. doi: 10.1080/00220671.1992.9941821
    Henkel, E. T. (1968). Undergraduate physics instruction and critical thinking ability. Journal of Research in Science Teaching, 5, 89-95.
    Hung, I. C., Chao, K. J., Lee, L., & Chen, N. S. (2013). Designing a robot teaching assistant for enhancing and sustaining learning motivation. Interactive learning environments, 21(2), 156-171. doi: 10.1080/10494820.2012.705855
    Hall, D., Hegab, H., & Nelson, J. (2008). Living WITH the Lab-a freshman curriculum to boost hands-on learning, student confidence and innovation. In 2008 38th Annual Frontiers in Education Conference (pp. S3G-8). IEEE. doi: 10.1109/FIE.2008.4720657
    Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction: Research findings and recommendations. Fullerton, CA: Peter A. Facione. doi: 10.22329/il.v20i1.2254
    Facione, P. A. (2000). The disposition toward critical thinking: Its character, measurement, and relation to critical thinking skill. Informal Logic, 20(1), 61-84.
    Greenfield, E. (1987). Teaching thinking through problem solving. New Directions for Teaching and Learning, 30, 5-22.
    Ishii, N., Suzuki, Y., Fujiyoshi, H., Fujii, T., & Kozawa, M. (2007). A framework for designing and improving learning environments fostering creativity. Psicologia Escolar e Educacional, 11(SPE), 59-69. doi: 10.1590/S1413-85572007000300006
    Jackson, N., & Buining, F. (2011). Enriching problem-based learning through design thinking. New approaches to problem-based learning: Revitalising your practice in higher education, 158-170.
    Johansson‐Sköldberg, U., Woodilla, J., & Çetinkaya, M. (2013). Design thinking: past, present and possible futures. Creativity and innovation management, 22(2), 121-146. doi: 10.1111/caim.12023
    Kinzie, M. B., Delcourt, M. A. B., & Powers, S. M. (1994). Computer technologies: Attitudes and self efficacy across undergraduate disciplines. Research in Higher Education, 35, 745-768. doi: 10.1007/BF02497085
    Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H.-Y. (2015). Design Thinking for Education: Conceptions and Applications in Teaching and Learning. Singapore: Springer. doi: 10.1007/978-981-287-444-3
    Kennedy, M., Fisher, M. B., & Ennis, R. H. (1991). Critical thinking: Literature review and needed research. In L. Idol & B. F. Jones (Eds.), Educational values and cognitive instruction: Implications for reform (pp. 11-40). Hillsdale, NJ: Lawrence Erlbaum & Associates.
    Kewalramani, S., Palaiologou, I., & Dardanou, M. (2020). Children’s Engineering Design Thinking Processes: The Magic of the ROBOTS and the Power of BLOCKS (Electronics). EURASIA Journal of Mathematics, Science and Technology Education, 16(3), em1830. doi: 10.29333/ejmste/113247
    Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance children’s self-efficacy, STEM attitudes, and computational thinking skills. Journal of Science Education and Technology, 25(6), 860-876. doi: 10.1007/s10956-016-9628-2
    Liedtka, J., Salzman, R., & Azer, D. (2017). Design thinking for the greater good: Innovation in the social sector. New York: Columbia University Press. doi: 10.9707/1944-5660.1411
    Mulopo, M. M., & Fowler, H. S. (1987). Effects of traditional and discovery instruction approaches on learning outcomes for learners of different intellectual development. A study of chemistry students in Zambia. Journal of Research in Science Teaching, 24, 217-227. doi: 10.1002/tea.3660240303
    Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A. (2009). Collaborative robotic instruction: A graph teaching experience. Computers & Education, 53(2), 330-342. doi: 10.1016/j.compedu.2009.02.010
    Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood Cliffs, NJ: Prentice-Hall.
    Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463-484. doi: 10.1007/s11423-019-09708-w
    Omasta, E., & Lunetta, V. N. (1988). Exploring Functions: A Strategy for Teaching Physics Concepts and Problem-Solving. Science Education, 72(5), 625-36. doi: 10.1002/sce.3730720508
    Rativa, A. S. (2018). How can we teach educational robotics to foster 21st learning skills through PBL, Arduino and S4A?. In International Conference on Robotics and Education RiE 2017 (pp. 149-161). Springer, Cham. doi: 10.1007/978-3-319-97085-1_15
    Russell, J. M., & Chiappetta, E. L. (1981). The effects of a problem solving strategy on the achievement of earth science students. Journal of Research in Science Teaching, 18, 295-301. doi: 10.1002/tea.3660180404
    Rubin, M., Watt, S. E., & Ramelli, M. (2012). Immigrants’ social integration as a function of approach–avoidance orientation and problem-solving style. International Journal of Intercultural Relations, 36(4), 498-505. doi: 10.1016/j.ijintrel.2011.12.009
    Schacter, D. L., Gilbert, D. T., & Wegner, D. M. (2009). Introducing psychology. Macmillan.
    Stanford d.School. (2010). An Introduction to Design Thinking PROCESS GUIDE. CA: Institute of Design at Stanford.
    Stracke, E. (2016). Language learning strategies of Indonesian primary school students: In relation to self-efficacy beliefs. System, 60, 1-10. doi:10.1016/j.system.2016.05.001
    Silva, E. (2009). Measuring skills for 21st-century learning. Phi Delta Kappan, 90(9), 630-634. doi: 10.1177/003172170909000905
    Slack, S.J., & Stewart, J. (1990). High school students' problem-solving performance on realistic genetics problems. Journal of Research in Science Teaching, 27, 55-67. doi: 10.1002/tea.3660270106
    Saunders, W., & Shepardson, D. P. (1987). A comparison of concrete and formal science instruction upon science achievement and reasoning ability of sixth grade students. Journal of Research in Science Teaching, 24, 39-51. doi: 10.1002/tea.3660240105
    Sándorová, Z., Repáňová, T., Palenčíková, Z., & Beták, N. (2020). Design thinking-A revolutionary new approach in tourism education?. Journal of Hospitality, Leisure, Sport & Tourism Education, 26, 100238. doi: 10.1016/j.jhlste.2019.100238
    Trilling, B., & Fadel, C. (2009). 21st Century Skills: Learning for Life in Our Times. San Francisco, CA: John Wiley & Sons. doi: 10.5860/CHOICE.47-5788
    Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, N.J.: Prentice-Hall.
    doi: 10.1037/13134-008
    Torrance, E. P. (1979). The search of satori & creativity. Buffalo, New York: Creative Education Foundation, Inc. doi: 10.1037/017877
    Torrance, E. P. & Harmon, J. A. (1961). Effects of memory, evaluative and creative reading sets on test performance. Journal of Educational Psychology, 52, 207-214. doi: 10.1037/h0044770
    Tsai, M.-J., & Tsai, C.-C. (2003). Information searching strategies in Web-based science learning: The role of Internet self-efficacy. Innovations in Education and Teaching International, 40(1), 43–50.doi:10.1080/135500032000038822.
    Tsai, M.-J., & Tsai, C.-C. (2010). Junior high school students’ Internet usage and self-efficacy: A re-examination of the gender gap. Computers & Education, 54(4), 1182–1192. doi: 10.1016/j.compedu.2009.11.004
    Tsai, M.-J., & Wang, C.-Y. (under review). Assessing young students’ design thinking disposition and its relationship with computer programming self-efficacy. Journal of Educational Computing Research.
    Tsai, M.-J., & Wang, C.-Y. (in preparation). Development of the robotics learning self-efficacy scale (RLSES). Manuscript submitted for publication.
    Von Thienen, J., Royalty, A., & Meinel, C. (2017). Design Thinking in Higher Education: How Students become Dedicated Creative Problem Solvers. In C. Zhou (Ed.), Handbook of Research on Creative Problem-Solving Skill Development in Higher Education (pp. 306–328). Hershey, PA: IGI Global. doi: 10.4018/978-1-5225-0643-0.ch014
    Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Educator, Summer, 8-19. doi: 10.1126/science.aaf4029
    Wu, H. M., & Mok, M. M. C. (2019). The Validity of Personal Best, Self-Efficacy, Self-Regulated Learning, and Academic Achievement: Theory of Planned Behavior as a Framework. Psychological Testing, 66(3), 321-346. doi: 10.5772/intechopen.70948
    Wachenchauzer, R. (2004). Work in progress-promoting critical thinking while learning programming language concepts and paradigms. In 34th Annual Frontiers in Education, 2004. FIE 2004. (pp. F4C-13). IEEE. doi: 10.1109/FIE.2004.1408650
    Williams, W. A., & Rieger, J. (2015). A design history of design : Complexity, criticality, and cultural competence. Design Studies in Canada (and Beyond), 40(2), 15–21. doi: 10.7202/1035392ar
    Williams, W. M., & Yang, L. T. (1999). Organizational creativity. In R. J. Sternberg (Ed.), Handbook of creativity, 373-391. Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9780511807916.021
    Zhong, B., & Li, T. (2020). Can Pair Learning Improve Students’ Troubleshooting Performance in Robotics Education? Journal of Educational Computing Research, 58(1), 220–248. doi: 10.1177/0735633119829191
    Zimmerman, B., & Schunk, D. (2006). Competence and control beliefs: Distinguishing the means and ends. Handbook of educational psychology, 349-367. doi: 10.4324/9780203874790.ch16
    Zviel-Girshin, R., Luria, A., & Shaham, C. (2020). Robotics as a Tool to Enhance Technological Thinking in Early Childhood. Journal of Science Education and Technology, 1-9. doi: 10.1007/s10956-020-09815-x
    Zhang, X., & Ardasheva, Y. (2019). Sources of college EFL learners’ self-efficacy in the English public speaking domain. English for Specific Purposes, 53, 47-59. doi: 10.1016/j.esp.2018. 09.004

    QR CODE