簡易檢索 / 詳目顯示

研究生: 林華富
Hua-Fu Lin
論文名稱: 平行運算應用於FMCW雷達生理訊號追蹤之研究
A Study of Parallel Computing for Vital Sign Tracking Based on FMCW Radar
指導教授: 陳維美
Wei-Mei Chen
口試委員: 陳維美
Wei-Mei Chen
曾昭雄
Chao-Hsiung Tseng
林昌鴻
Chang-Hong Lin
林敬舜
Ching-Shun Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 45
中文關鍵詞: FMCW 雷達生理訊號平行運算非接觸式生理訊號感測器雷達訊號處理
外文關鍵詞: FMCW Radar, Vital signs, Parallel computing, Non-contact vital sign sensor, Radar signal processing
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FMCW 雷達相較於CW 雷達多出測距能力,透過一些訊號處理的方法更能使FMCW 雷達擁有有多個目標物體的分析能力,因此可以用於分析多個目標的生理訊號、運動狀態等領域;但FMCW 雷達在訊號處理上需要非常大量的運算資源,例如FFT 轉換等,造成在運算上會有所延遲,無法及時反應結果;本文嘗試了基於兩種不同機制的生理訊號評估,分別針對這兩種方法的特性及需求各別設計FMCW 雷達訊號處理平行演算法,透過GPU 平行加速的方式將執行時間最小化。


    Compared to CW Radar, FMCW radar has range measurement capability. By employing some signal processing method, FMCW radar can do multiple target tracking so that it can apply to the vital sign and motion state tracking of multiple targets. But FMCW radar
    needs massive processing resources; for example, it needs plenty of FFT processing. It
    leads to the delay in processing, making it difficult to achieve real-time processing. In this thesis, we employ two different evaluation methods for evaluating vital signs; consequently, we design two parallel algorithms of FMCW radar signal processing for both methods and minimize the execution time through GPU parallel acceleration.

    論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . II 誌謝. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 連續波雷達感測原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 頻率調變連續波雷達感測原理. . . . . . . . . . . . . . . . . . . . . . 4 2.3 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 NVIDIA Jetson 系列. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 硬體架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 FMCW 雷達生理訊號量測演算法. . . . . . . . . . . . . . . . . . . . 10 3.3 FMCW 雷達生理訊號量測平行演算法. . . . . . . . . . . . . . . . . . 18 4 實驗設計與結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 生理訊號量測實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 演算法執行時間分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A Review on Recent Advances
    in Doppler Radar Sensors for Noncontact Healthcare Monitoring,” IEEE Transactions
    on Microwave Theory and Techniques, vol. 61, no. 5, pp. 2046–2060, 2013.
    [2] C. Li, Z. Peng, T.-Y. Huang, T. Fan, F.-K. Wang, T.-S. Horng, J.-M. Muñoz-Ferreras,
    R. Gómez-García, L. Ran, and J. Lin, “A Review on Recent Progress of Portable
    Short-Range Noncontact Microwave Radar Systems,” IEEE Transactions on Microwave
    Theory and Techniques, vol. 65, no. 5, pp. 1692–1706, 2017.
    [3] V. Milovanović, “On fundamental operating principles and range-doppler estimation
    in monolithic frequency-modulated continuous-wave radar sensors,” Facta universitatis
    - series: Electronics and Energetics, vol. 31, pp. 547–570, 01 2018.
    [4] T. M. John Cheng, Max Grossman, “Professional CUDA C Programming,” Wrox
    Press Ltd., 2014.
    [5] Y. Liu, L. Jiang, L. Kong, Q. Xiang, X. Liu, and G. Chen, “Wi-Fruit: See Through
    Fruits with Smart Devices,” vol. 5, dec 2022.
    [6] H.-S. Yeo, G. Flamich, P. Schrempf, D. Harris-Birtill, and A. Quigley, “RadarCat:
    Radar Categorization for Input Interaction,” UIST ’16, (New York, NY, USA),
    pp. 833–841, Association for Computing Machinery, 2016.
    [7] J. Kranjec, S. Beguš, G. Geršak, and J. Drnovšek, “Non-contact heart rate and heart
    rate variability measurements: A review,” Biomedical Signal Processing and Control,
    vol. 13, pp. 102–112, 2014.
    [8] Z. Yang, P. H. Pathak, Y. Zeng, X. Liran, and P. Mohapatra, “Vital Sign and Sleep
    Monitoring Using Millimeter Wave,” ACM Trans. Sen. Netw., vol. 13, apr 2017.
    [9] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent Demodulation With
    DC Offset Compensation in Quadrature Doppler Radar Receiver Systems,” IEEE
    Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 1073–1079,
    2007.
    [10] C. Li and J. Lin, “Random Body Movement Cancellation in Doppler Radar Vital
    Sign Detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 56,
    no. 12, pp. 3143–3152, 2008.
    [11] J. Wang, X. Wang, L. Chen, J. Huangfu, C. Li, and L. Ran, “Noncontact Distance
    and Amplitude-Independent Vibration Measurement Based on an Extended DACM
    Algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 1,
    pp. 145–153, 2014.
    [12] G. Wang, J.-M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, “Application
    of Linear-Frequency-Modulated Continuous-Wave (LFMCW) Radars for Tracking
    of Vital Signs,” IEEE Transactions on Microwave Theory and Techniques, vol. 62,
    no. 6, pp. 1387–1399, 2014.
    [13] J. Liu, Y. Li, C. Li, C. Gu, and J.-F. Mao, “Accurate Measurement of Human Vital
    Signs With Linear FMCW Radars Under Proximity Stationary Clutters,” IEEE
    Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1393–1404,
    2021.
    [14] M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita, and S. Safavi-Naeini,
    “Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar,” IEEE
    Access, vol. 7, pp. 54958–54968, 2019.
    [15] H.-I. Choi, H. Song, and H.-C. Shin, “Target Range Selection of FMCW Radar for
    Accurate Vital Information Extraction,” IEEE Access, vol. 9, pp. 1261–1270, 2021.
    [16] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart Homes That Monitor
    Breathing and Heart Rate,” in Proceedings of the 33rd Annual ACM Conference
    on Human Factors in Computing Systems, CHI ’15, (New York, NY, USA), pp. 837–
    846, Association for Computing Machinery, 2015.
    [17] M. Ascione, A. Buonanno, M. D’Urso, L. Angrisani, and R. Schiano Lo Moriello,
    “A New Measurement Method Based on Music Algorithm for Through-the-Wall
    Detection of Life Signs,” IEEE Transactions on Instrumentation and Measurement,
    vol. 62, no. 1, pp. 13–26, 2013.
    [18] M. Zhao, F. Adib, and D. Katabi, “Emotion Recognition Using Wireless Signals,”
    MobiCom ’16, (New York, NY, USA), pp. 95–108, Association for Computing Machinery,
    2016.
    [19] P. M. Aviles, D. Lloria, J. A. Belloch, S. Roger, A. Lindoso, and M. Cobos, “Performance
    analysis of a millimeter wave MIMO channel estimation method in an
    embedded multi-core processor,” The Journal of Supercomputing, vol. 78, no. 12,
    pp. 14756–14767, 2022.
    [20] D. Lloria, P. M. Aviles, J. A. Belloch, S. Roger, C. Botella-Mascarell, and A. Lindoso,
    “Hybrid CPU–GPU implementation of the transformed spatial domain channel
    estimation algorithm for mmWave MIMO systems,” The Journal of Supercomputing,
    vol. 79, no. 9, pp. 9371–9382, 2023.
    [21] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Transactions
    on Computers, vol. C-21, no. 9, pp. 948–960, 1972.
    [22] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Transactions
    on Biomedical Engineering, vol. BME-32, pp. 230 – 236, 1985.

    無法下載圖示 全文公開日期 2025/08/15 (校內網路)
    全文公開日期 2025/08/15 (校外網路)
    全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE