簡易檢索 / 詳目顯示

研究生: 蕭為中
Wei-jhong Siao
論文名稱: 圖形處理器之高性能運算系統:應用於即時功能性磁振造影之研究
GPU-Accelerated High Performance Computing System: Application to Real-Time Functional Magnetic Resonance Imaging
指導教授: 黃騰毅
Teng-yi Huang
口試委員: 林益如
Yi-ru Lin
莊子肇
Tzu-chao Chuang
林發暄
Fa-hsuan Lin
王福年
Fu-nien Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 43
中文關鍵詞: 功能性磁振造影多核心平行運算架構一般線性模型即時功能性磁振造影
外文關鍵詞: functional magnetic resonance image (fMRI), massively parallel computation kernels, general linear model analysis (GLM), real-time functional magnetic resonance image (r
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是建立即時功能性磁振造影系統。透過功能性磁振造影研究者能夠觀察神經活化區域的血氧濃度比,確認該區域大腦皮質區的活動。而運算首先藉由高斯濾波器,將影像做平滑處理,而後使用一般線性模型找出大腦中之神經元活化區塊。本實驗利用大量核心的圖形處理器組成的多核心平行運算架構,透過溝通介面將MATLAB與C做連結,整合GPU中的各個核心。將每個像素的平滑濾波運算以及T檢定係數運算安排成大量的工作,交由圖形處理器的平行運算核心做運算。在此結合下,我們利用了個人電腦完成了即時功能性磁振造影,活化區的定位能在一秒之內完成。


    This study attempts to build a real-time functional magnetic resonance imaging system (rtfMRI) to monitor blood-oxygen-level-dependent (BOLD) signal during fMRI experiment. To detect the BOLD signal change, a Gaussian filter and a general linear model analysis were performed on MRI images immediately subsequent to image acquisitions. A graphic processing unit (GPU) with massively parallel computation kernels was used to accelerate the image processing [i.e. gaussian filter and general linear model analysis (GLM)]. The GPU program was compatible to MATLAB environment through a communication interface of MATLAB and C language. Using GPU computation, the analysis of rtfMRI could be accomplished in less than 1 second in a conventional personal computer.

    中文摘要 Abstract 第一章 簡介 即時功能性磁振造影 多核心平行運算架構 第二章 理論 血氧對比 血液動力學響應函數 通用線性模型 設計矩陣與餘弦函數 設計矩陣與血流響應函數 第三章 實驗方法與分析 實驗對象及實驗進行方式 即時影像分析流程 第四章 結果 第五章 討論與結論 參考文獻 附錄: 大腦生理組織 面迴訊影像

    1. Roy, C.S. and C.S. Sherrington, On the Regulation of the Blood-supply of the Brain. J Physiol, 1890. 11(1-2): p. 85-158 17.
    2. Gore, J.C., Principles and practice of functional MRI of the human brain. J Clin Invest, 2003. 112(1): p. 4-9.
    3. Cox, R.W., A. Jesmanowicz, and J.S. Hyde, Real-time functional magnetic resonance imaging. Magn Reson Med, 1995. 33(2): p. 230-6.
    4. Goddard, N.H., Hood, G., Cohen, J., Eddy, W., Genovese, C., Noll, D. and Nystrom, L., Online Analysis of Functional MRI Datasets on Parallel Platforms. The Journal of Supercomputing - Special issue on supercomputing in medicine, 2007. 11(3): p. 295-318.
    5. Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R. and Birbaumer, N., Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng, 2004. 51(6): p. 966-70.
    6. deCharms, R.C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M. ,Soneji, D., Gabrieli, J. D. E. and Mackey, S. C., Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(51): p. 18626-18631.
    7. Assarsson, U. and E. Sintorn, Fast parallel GPU-sorting using a hybrid algorithm. Journal of Parallel and Distributed Computing, 2008. 68(10): p. 1381-1388.
    8. Ogawa, S., Lee, T. M., Nayak, A. S. and Glynn, P., Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med, 1990. 14(1): p. 68-78.
    9. Kwong, K.K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Chen, H.M., Brady, T. J. and Rosen, B. R. , Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5675-9.
    10. Gossl, C., Fahrmeir, L. and Auer, D. P., Bayesian modeling of the hemodynamic response function in BOLD fMRI. Neuroimage, 2001. 14(1 Pt 1): p. 140-8.
    11. deCharms, R.C., Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci, 2007. 11(11): p. 473-81.

    QR CODE