簡易檢索 / 詳目顯示

研究生: Mega Lazuardi Umar
Mega Lazuardi Umar
論文名稱: Modeling and Verification of a Photovoltaic and a Photovoltaic-Thermal with Water and Air Collector
Modeling and Verification of a Photovoltaic and a Photovoltaic-Thermal with Water and Air Collector
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
彭成瑜
Cheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 125
中文關鍵詞: PVPV/TEfficiencySimulationSolar energyEconomic analysis
外文關鍵詞: PV, PV/T, Efficiency, Simulation, Solar energy, Economic analysis
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

臺灣位於兩個氣候帶,南部地區屬於熱帶,北部地區是亞熱帶,因此有豐富的太陽能資源,顯示臺灣具有發展太陽能技術的良好潛力。本研究根據能量守恆的定律,開發三種理論模型,包括光伏(PV)、光伏熱(PV/T)水和光伏熱(PV/T)空氣收集器。其中,太陽輻射、風速和環境溫度被當作建立模型時的輸入環境參數,從而產生電能和熱能。在晴天,多雲和陰天的三種情況下驗證實驗,並結合已發表的科學文獻作為驗證後,顯示出良好的模擬結果,誤差值低於5%且相關係數在0.96-0.99範圍內(近似於1)。我們所建立PV、PV/T水和PV/T空氣收集系統的三種預測模型,其日平均之總效率分別為47.35%、61.72%和71.10%。經過驗證後,本研究選擇台北、台中、高雄三個城市作為台灣北部、中部和南部地區的代表,分析月和年度的性能比較。我們的研究預測PV、PV/T水和PV/T空氣在台北的年總能源輸出分別為486.72、849.37和1122.44千瓦小時/年。台中為600.67、1116.90和1548.80千瓦小時/年。高雄則為637.06、1143.50和1523.10千瓦時/年。最後提出經濟效益分析,根據所選城市的能源產出提供最佳擬設置系統。顯示PV/T比傳統PV具有更高的經濟效益。在未來可以作為欲安裝PV和PV/T系統者導入太陽能源策略時的參考,加速目前可再生能源中PV/T技術的發展市場。


Energy from the sun is plentifully available in Taiwan due to its geographical location, which covers two climates: tropical in the south region and subtropical in the north region. This condition denotes that Taiwan has strong potential to develop solar energy technology such as Photovoltaic (PV). This study develops three theoretical models, including PV, Photovoltaic-Thermal (PV/T) water, and PV/T air collector, according to the concept of the energy balance equation. We use environmental parameters, including solar radiation, wind speed, and ambient temperature, as inputs of our modeling, resulting in both electrical and thermal energy performances. Experimental verification under the three conditions of sunny, cloudy, and overcast combined with published scientific literature helps validate and shows good agreement with an error value below 5% and a very good correlation coefficient in the range of 0.96-0.99 (very close to 1). Our models predict that the total energy efficiency of the three models is 47.35, 61.72, and 71.10% for PV, PV/T water, and PV/T air collector, respectively. After verification, this study then selects three cities, Taipei, Taichung, and Kaohsiung, as representative of the country’s north, central, and south regions, and then analyzes monthly and annual performance comparisons. Our findings predict the total annual energy output in Taipei for PV, PV/T water, and PV/T air collector is 486.72, 849.37, and 1122.44 kWh/year, respectively; the total annual energy output in Taichung for PV, PV/T water, and PV/T air collector is 600.67, 1166.90, and 1548.80 kWh/year, respectively; and the total annual energy output in Kaohsiung for PV, PV/T water, and PV/T air collector is 637.06, 1143.50, and 1523.10 kWh/year, respectively. Finally, we present an economic analysis to justify the best-proposed models according to the energy output in the selected cities. Findings show that both PV/T water and PV/T air collector have a higher economic benefit than conventional PV. In the future, this result can be taken as a valuable reference for users who want to install PV and PV/T systems or related processes when considering a solar energy strategy and to accelerate the development of PV/T technology in the renewable energy market.

Abstract i 摘要 ii Acknowledgments iii List of Contents iv List of Figures vii List of Tables x List of Symbols xi Chapter 1 Introduction 1 1.1 Research background and motivation 1 1.2 Previous studies 3 1.3 Research objectives 7 1.4 Research flowchart and thesis structure 7 Chapter 2 Theoretical Background 9 2.1 Solar radiation in Taiwan 9 2.1.1 Calculation of the solar radiation 10 2.2 Photovoltaic cell principle and temperature influence 12 2.3 Photovoltaic (PV) and Photovoltaic-Thermal (PV/T) collector 13 2.3.1 PV 17 2.3.2 PV/T water collector 19 2.3.3 PV/T air collector 21 2.4 Standard for evaluating the performance of the PV/T 22 Chapter 3 Modeling Methodology 25 3.1 Physical systems 25 3.1.1 Physical system of PV 25 3.1.2 Physical system of PV/T water collector 26 3.1.3 Physical system of PV/T air collector 27 3.2 Introduction about energy balance equation 31 3.3 Assumptions of analysis 31 3.4 Mathematical models 32 3.4.1 PV 32 3.4.2 PV/T water collector 35 3.4.3 PV/T air collector 40 Chapter 4 Validation 44 4.1 Validation of the PV 44 4.1.1 Validation in the sunny condition 44 4.1.2 Validation in the cloudy condition 45 4.1.3 Validation in the overcast condition 47 4.2 Validation of the PV/T water collector 48 4.2.1 Validation in the sunny condition 49 4.2.2 Validation in the cloudy condition 50 4.2.3 Validation in the overcast condition 51 4.3 Validation of the PV/T air collector 53 4.3.1 Validation in the sunny condition 55 4.3.2 Validation in the cloudy condition 56 4.3.3 Validation in the overcast condition 57 Chapter 5 Results and Discussion 60 5.1 Daily temperature distribution 60 5.2 Daily energy performance 62 5.3 Monthly and annual energy performance 64 5.4 Economic analysis 69 Chapter 6 Conclusions 73 References 75 Appendix 82 A. Matlab program to estimate solar radiation in specific day and month 82 B. Simulink model 85 C. Experimental and simulation data of PV in the validation 88 D. Experimental and simulation data of PV/T water collector in the validation 94 E. Experimental and simulation data of PV/T air collector in the validation 100 F. Parametric studies 107

[1] BP Statistical Review of World Energy 2018. https://www.bp.com. Last access: October 15, 2018.
[2] K.C. Chang, W. M Lin, T. S. Leu, K.M Chung, Perspectives for solar thermal applications in Taiwan. Energy Policy 94(2016), pp. 25-28.
[3] Bureau of Energy. Ministry of Economic Affairs. Energy Statistic Handbook 2017.
[4] A.J. Waldau A. PV Status Report. Joint Research Centre. European Commision. 2017.
[5] http://latitudelongitude.org/tw/ last access: April 23, 2018.
[6] T. Ma, H. Yang, L. Lu. Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong. Appl Energy 112(2013), pp. 663-672.
[7] E. Abdeen, M. Orabi, E. Hasaneen. Optimum tilt angle for photovoltaic system in desert environment. Sol Energy 155(2017), pp. 267-280.
[8] A.E. Brooks. Future Energy (2nd Edition). Improved, Sustainable and Clean Options for our Planet (2014), pp. 383-404.
[9] M. Wolf. Performance analyses of combined heating and photovoltaic power systems for residences. Energy Convers 16(1976), pp. 79-90.
[10] A.S. Joshi, A. Tiwari, G.N. Tiwari, I. Dincer, B.V. Reddy. Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int J Therm Sci, 48(2009), pp. 154-164.
[11] N. Aste, G. Chiesa, F. Verri. Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector. Renew Energy, 33(2008), pp. 914-927.
[12] M.E.A. Slimani, M. Amirat, S. Bahria, I. Kurucz, M. Aouli, R. Sellami. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer. Energy Convers Manage, 125(2016), pp. 209-221.
[13] M.A. Dahmene, A. Malek, T. Zitoun. Design and analysis of a BIPV/T system with two applications controlled by an air handling unit. Energy Convers Manage, 175(2018), pp. 49-66.
[14] F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, M.M. Adeli. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl Energy, 87(2010), pp. 2328-2339.
[15] M.E.A Slimani, M. Amirat, I Kurucz, S. Bahria, A. Hamidat, W.B. Chaouch. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Convers Manage, 133(2017), pp.458-476.
[16] N. Aste, C.D. Pero, F. Leonforte, M. Manfren. Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector. Sol Energy, 135(2016), pp. 551-568.
[17] K. Touafek, A. Khelifa, M. Adouane. Theoretical and experimental study of sheet and tubes hybrid PVT collector. Energy Convers Manage, 80(2014), pp. 71-77.
[18] C.F.J. Kuo, J.M. Liu, M.L. Umar, W.L. Lan, C.Y. Huang, S.S. Syu. The photovoltaic-thermal system parameter optimization design and practical verification. Energy Convers Manage, 180(2019), pp. 358-371.
[19] W. He, Y. Zhang, J. Ji. Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water. Appl Therm Eng, 31(2011), pp. 3369-3376.
[20] S. Bhattarai, J.H. Oh, S.H. Euh, G.K. Kafle, D.H. Kim. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Sol Energy Mater Sol Cells, 103(2012), pp. 184-193.
[21] U. Eicker, A. Dalibard. Photovoltaic–thermal collectors for night radiative cooling of buildings. Sol Energy, 85(2011), pp. 1322-1335.
[22] M. Herrando, C.N. Markides, K. Hellgardt. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Appl Energy, 122(2014), pp. 288-309.
[23] N. Aste, F. Leonforte, C.D. Pero. Design, modeling and performance monitoring of a photovoltaic-thermal (PVT) water collector. Sol Energy, 112(2015), pp. 85-99.
[24] J. Yazdanpanahi, F. Sarhaddi, M.M. Adeli. Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Sol Energy, 118(2015), pp. 197-208.
[25] A. Fudholi, K. Sopian, M.H. Yazdi, M.H. Ruslan, A. Ibrahim, H.A. Kazem. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manage, 78(2014), pp. 641-651.
[26] M.Y. Othman, B. Yatim, K. Sopian, A. Zaharim, M.N.A. Bakar. Studies of a photovoltaic-thermal solar drying system for rural applications. Proceedings of the second WSEAS International Conference on renewable energy sources (RES’08) (2008), pp. 132-136.
[27] T. Yang, A.K. Athienitis. A study of design options for a building integrated photovoltaic/thermal (BIPV/T) system with glazed air collector and multiple inlets. Sol Energy, 104 (2014), pp. 82-92.
[28] P. Barnwal, G.N. Tiwari. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Sol energy, 82(2008), pp. 1131-1144.
[29] S. Tiwari, S. Agrawal, G.N. Tiwari. PVT air collector integrated greenhouse dryers. Renew Sust Energ Rev, 90(2018), pp. 142-159.
[30] D. Das, P. Kalita, O. Roy. Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development. Renew Sust Energ Rev, 84(2018), pp. 111-130.
[31] F. Yazdanifard, M. Ameri, E.E. Bajestan. Performance of nanofluid-based photovoltaic/thermal systems: A review. Renew Sust Energ Rev, 76(2017), pp. 323-352.
[32] A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazeem, K. Sopian. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manage, 148(2017), pp. 963-973.
[33] M. Ghadiri, M. Sardarabadi, M. Pasandideh-fard, A.J. Moghadam. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manage, 103(2015), pp. 468-476.
[34] A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, M.H. Ruslan. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manage, 124 (2016), pp. 528-542.
[35] M.S.Y. Ebaid, A.M. Ghrair, M. Al-Busoul. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethyl ammonium bromide mixture. Energy Convers Manage, 155 (2018), pp. 324-343.
[36] W. Chamsa-ard, S. Brundavanam, C.C. Fung, D. Fawcett, G. Poinern. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials, (2017).
[37] Z. Said, S. Arora, E. Bellos. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew Sust Energ Rev, 94(2018), pp. 302-316.
[38] R.A. Taylor, T. Otonicar, G. Rosengarten. Nanofluid-based optical filter optimization for PV/T systems. Light: Science & Applications, 1(2012).
[39] K. Moradi, M.A. Ebadian, C.X. Lin. A review of PV/T technologies: Effects of control parameters. Int J Heat Mass Trans, 64(2013), pp. 483-500.
[40] S.A. Kalogirou, Y. Tripanagnostopoulos, Industrial application of PV/T solar energy systems. Appl Therm Eng, 27(2007), pp. 1259-1270.
[41] S. Bhattarai, G.K. Kafle, S.H. Euh, J.H. Oh, D.H. Kim. Comparative study of photovoltaic and thermal solar systems with different storage capacities: performance evaluation and economic analysis. Energy, 61(2013), pp. 272-282.
[42] C.F.J. Kuo, Y.W. Lee, M.L. Umar, P.C. Yang. Dynamic modeling, practical verification and energy benefit analysis of a photovoltaic and thermal composite module system. Energy Convers Manage, 154(2017), pp. 470-481.
[43] Y. Chen, A.K. Athienitis, K. Galal. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: part 1, BIPV/T system and house energy concept. Sol Energy, 84(2010), pp. 1892-1907.
[44] S. Nayak, A. Tiwari. Performance evaluation of an integrated hybrid photovoltaic thermal (PV/T) greenhouse system. International Journal of Agricultural Research, 2(2007), pp. 211-226.
[45] H.G. Teo, P.S. Lee, M.N.A. Hawlader. An active cooling system for photovoltaic modules. Appl Energy, 90(2012), pp. 309-315.
[46] Geography of Taiwan: A Summary. http://twgeog.ntnugeog.org, last access: November 26, 2018.
[47] S.A.M Maleki, H. Hizam, C. Gomes. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: Models Re-Visited. Energies, 10(2017).
[48] D.H.W Li, S.W Lou, J.C Lam. An analysis of global, direct, and diffuse solar radiation. Energy Procedia, 75(2015), pp. 388-393.
[49] B.Y.H. Liu, R.C. Jordan, Daily insolation on surfaces tilted toward the equator. Trans. ASHRAE, (1962), pp. 526-541.
[50] G.N. Tiwari, A. Tiwari, Shyam. Handbook of Solar Energy: Theory, Analysis and Applications. Springer Nature, Singapore (2016).
[51] T. Khatib, W. Elmenreich, Modeling of photovoltaic systems using Matlab: Simplified green codes, John Wiley & Sons, (2016).
[52] S.A. Klein. Calculation of monthly average insolation on tilted surfaces. Sol Energy, 19(1977), pp. 325–329.
[53] ASHRAE. Handbook of Fundamentals. Atlanta, Georgia: American Society of Heating, Refrigeration, and Air-Conditioning Engineers. (1985)
[54] K. Bakirci. Estimation of solar radiation by using ASHRAE clear sky model in Erzurum, Turkey. Energy Sources, 31(2009), pp. 208-216.
[55] J. J. Michael, Iniyan S, R. Goic. Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide. Renew Sust Energ Rev, 51(2015), pp. 62-88.
[56] S. Chander, A. Purohit, A. Sharma, S. P. Nehra, M. S. Dhaka. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Reports, 1(2015), pp. 175-180.
[57] A. Bai, J. Popp, P. Balogh, Z. Gabnai, B. Pályi, I. Farkas, G. Pintér, H. Zsiborács. Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions. Renew Sust Energ Rev, 60(2016), pp. 1086-1099.
[58] A. Makki, S. Omer, H. Sabir. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sust Energ Rev, 41(2015), pp. 658–684.
[59] X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew Sust Energ Rev, 16(2012), pp. 599-617.
[60] V. V. Tyagi, S. C. Kaushik, S. K. Tyagi. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew Sust Energ Rev 16(2012), pp. 1383-1398.
[61] R. Stropnik, U. Stritih. Increasing the efficiency of PV panel with the use of PCM. Renew Energy. 97(2016), pp. 671-679.
[62] N. Gilmore, V. Timchenko, C. Menictas. Microchannel cooling of concentrator photovoltaics: A review. Renew Sust Energ Rev, 90(2018), pp. 1041-1059.
[63] H.G. Teo, P.S. Lee, M.N.A. Hawlader. An active cooling system for photovoltaic modules. Appl Energy 90(2012), pp. 309-315.
[64] www.engineeringtoolbox.com, last access: August 7, 2018.
[65] J. H Kim, S. H Park, J. T. Kim. Experimental performance of a photovoltaic-thermal air collector. Energy Procedia 48(2014) pp. 888 – 894.
[66] http://www.solarmango.com, last access: August 9, 2018.
[67] R. Bakari, R. J. A. Minja, K. N. Njau. Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Journal of Energy. 2014.
[68] F. Giovannetti, S. Föste, N. Ehrmann, G. Rockendorf. High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance. Energy Procedia 30 (2012), pp. 106-115.
[69] A. Badiee, I. A. Ashcroft, R. D. Wildman. The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant. International Journal of Adhesion and Adhesives. 68(2016), pp. 212-218.
[70] https://www.enfsolar.com, last access: August 9, 2018.
[71] C.P. Kothandaraman. Heat and Mass Transfer Data Book, New Age International, (2004).
[72] P. Hofmann, P. Dupeyrat, K. Kramer, M. Hermann, G. Stryi-Hipp. Measurements and benchmark of PV–T collectors according to EN 12975 and development of a standardized measurement procedure. In: Proceedings of EuroSun, Graz, Austria. (2010).
[73] S. Odeh. Analysis of the performance indicators of the PV power system. Journal of Power and Energy Engineering, 6(2018), pp. 59-75.
[74] K. Sopian, K.S. Yigit, H.T. Liu, S. Kakac, T.N. Veziroglu. Performance analysis of photovoltaic thermal air heaters. Energy Convers Manage, 37(1996), pp. 1657-1670.
[75] B.J. Huang, T.H. Lin, W.C. Hung, F.S. Sun. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy, 70(2001), pp. 443–448.
[76] J. C. Mojumder, H.C. Ong, W. T. Chong, S. Shamshirband, A. Al-Mamoon. Application of support vector machine for prediction of electrical and thermal performance in PV/T system. Energy Build, 111(2016), pp. 267-277.
[77] H. Saygin, R. Nowzari, N. Mirzaei, L.B.Y. Aldabbagh. Performance evaluation of a modified PV/T solar collector: A case study in design and analysis of experiment. Sol Energy, 141(2017), pp. 210-221.
[78] B.J Huang. Performance rating method of thermosyphon solar water heaters. Sol Energy, 50 (5) (1993), pp. 435-440.
[79] https://solar.auo.com, last access: August 22, 2018.
[80] S.P. Aly, S. Ahzi, N. Barth, A. Abdallah. Using energy balance method to study the thermal behavior of PV panels under time-varying field conditions. Energy Converse Manage, 175(2018), pp. 246-262.
[81] F. Spertino, A. D’Angola, D. Enescu, P.D. Leo, G.V. Fracastoro, R. Zaffina. Thermal–electrical model for energy estimation of a water cooled photovoltaic module. Sol Energy, 133(2016), pp. 119-140.
[82] D.R. Mattia, R. Giorgio, R. Cecilia, S. Federico, L.A. Tagliafico. Dynamic thermal model for hybrid photovoltaic panels. Energy Procedia, 81(2015), pp. 345 – 353.
[83] Y.W. Lee, C.F.J. Kuo, W.H. Weng, C.Y. Huang, C.Y. Peng. Dynamic modeling and entity validation of a photovoltaic system. Appl Energy, 200(2017), pp. 370-382.
[84] D. Su, Y.Jia, X. Huang, G. Alva, Y. Tang, G. Fang. Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids. Energy Convers Manage 120(2016), pp. 13-24.
[85] S.L. Swinbank. Long-wave radiation from clear skies. Quarter J Royal Meteorol Soc, 89(1963), pp. 339.
[86] O. Rejeb, M. Sardarabadi, C. Menezo, M. Passandideh-Fard, M.H. Dhaou. A. Jemni. Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers Manage 110(2016), pp. 367-377.
[87] O. Rejeb, H. Dhaou, A. Jemni. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renew Energy, 77(2015), pp. 43-50.
[88] J.A. Duffie, W.A. Beckman. Solar engineering of thermal processes. John Wiley & Sons, Inc, (2013).
[89] E. Skoplafi, J.A. Palyfos. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol Energy, 83(2009), pp. 614-624.
[90] T. T. Chow. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol Energy, 75(2003), pp. 143-152.
[91] T.L. Bergman, A. S. Lavine, F.P. Incropera. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Inc, (2011).
[92] I. Guarracino, A. Mellor, N.J. Ekins-Daukes, C.N. Markides. Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Appl Therm Eng, 101(2016), 778-795.
[93] S. Dubey, J.N. Sarvaiya, B. Seshadri. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A review. Energy Procedia, 33(2013), 311-321.
[94] F. Huide, Z. Xuxin, M. Lei, Z. Tao, W. Qixing, S. Hongyuan. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Convers Manage, 140(2017), pp. 1-13.
[95] Central Weather Bureau. https://www.cwb.gov.tw. last access: March 7, 2018.
[96] Taiwan Power Company, electricity rate 1 April. https://www.taipower.com.tw. last access: September 15, 2018.

無法下載圖示 全文公開日期 2024/02/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE