簡易檢索 / 詳目顯示

研究生: 蔡欣靜
Shin-Ching Tsai
論文名稱: 應用於智能電網之分散式需求響應
Communication-Efficient Distributed Demand Response for Smart Grid Networks
指導教授: 林士駿
Shih-Chun Lin
張縱輝
Tsung-Hui Chang
口試委員: 鍾偉和
chung wei-ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 63
中文關鍵詞: 需求響應需求端管理分散最佳化s電力平衡
外文關鍵詞: Alternating direction method of multipliers (ADM, demand response (DR), distributed optimization, power balancing
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討智慧電網的分散式需求響應問題,而需求響應的目標是達到電力供需平衡,其中考慮到一電力公司同時服務大量的使用者,且使用者配備著再生能源。在現存的需求響應方法中,每個使用者通常需要和電力公司互相通訊,進行交換訊息,而在此篇論文中,我們假設每個使用者僅需和各別的鄰居做訊息的交換,以設計低複雜度的無線通訊網路下實現的全分散式性需求響應演算法。未達此目的,本篇論文題出基於隨機交替方向乘子法(randomized Alternating Direction Multipliers Method, ADMM)的分佈式需求響應演算法。此方法不僅能以較快地速度內達到一定的電力平衡效能,更是只需各別用戶與鄰居進行訊息交換即可達到預期的目標。此外,此篇論文所提出的方法不需要各個用戶之間緊密同步並且允許通訊錯誤的發生。為了實現需求響應的實時(real-time)控制,我們更將提出的需求響應方法結合模型預測控制方法(Model Predictive Control Method, MPC),使用滾動視窗(rolling window)的方式搭配簡單的負載、再生能源預測方法執行實時控制。而模擬結果證明了我們提出得演算法能夠達到足夠好的電力供需平衡,並優於現存的全分散式演算法。


    In this thesis, we consider the distributed demand response (DDR) problem
    for achieving the real-time power balance in a neighborhood with a large
    number of load customers and renewable energy sources (RES). While most
    of the existing DDR schemes require iterative information exchange between
    the customers and the utility through two-way communications, this thesis
    studies the DDR schemes that rely on neighbor-wise communication between
    customers only. Such DDR schemes can be realized by low-cost wireless
    networks. To this end, we propose the use of a randomized alternating direction
    method of multipliers (ADMM), to develop a fully distributed DR
    algorithm. Notably, the proposed DDR algorithm is communication-e cient
    because it can yield promising power balance performance using a few times
    of neighbor-wise message exchanges. Moreover, the proposed DDR algorithm
    does not need synchronization between customers and is robust against random
    communication errors. For performing online DR control, we combine
    the proposed DDR algorithm with the rolling-window based model predictive
    control method and simple load and RES forecasting methods. By using real
    solar power data, we demonstrate via simulations that the proposed DDR algorithm
    improves the real-time power balance signi cantly and outperforms
    the existing DDR schemes that use the subgradient method for optimization.

    1 Background 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Existing Method . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Models and Problem Statement 6 2.1 Power Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Day-ahead Power Market . . . . . . . . . . . . . . . . . 7 2.1.2 Real-time Power Market . . . . . . . . . . . . . . . . . 7 2.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Controllable Load Models . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Deferrable Loads . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Storage Model . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Electric Vehicles (EVs) . . . . . . . . . . . . . . . . . . 11 2.3.4 Heating, Ventilation and Air Conditioning (HVAC) . . 12 2.4 The Demand Response Problem . . . . . . . . . . . . . . . . . 13 3 Existing Method by Dual Consensus Subgradient 16 3.1 Dual Consensensus Subgradient Method . . . . . . . . . . . . 16 4 Proposed Method by Randomized DC-ADMM 21 4.1 DC-ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Randomized DC-ADMM . . . . . . . . . . . . . . . . . . . . . 26 4.3 Distributed Demand Response Problem via Randomized DCADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 On-line Scheduling in Rolling Window 33 5.1 DR Problem in Rolling Window . . . . . . . . . . . . . . . . . 33 5.2 Prediction of Solar Power and Deferrable Loads . . . . . . . . 36 6 Simulation Results and Discussions 40 6.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2 Convergence Performance . . . . . . . . . . . . . . . . . . . . 42 6.3 Performance of Online Distributed Demand Response . . . . 44 6.4 Impact of Solar PV Penetration . . . . . . . . . . . . . . . . . 50 7 Conclusions and Future Directions 51 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 52

    1] G. Strbac, "Demand side management: Benefits and challenges," Energy Policy,
    vol. 36, no. 12, pp. 4419-4426, Dec. 2008.
    [2] M. Alizadeh, X. Li, Z.Wang, A. Scaglione, and R. Melton, "Demand side management in the smart grid: Information processing for the power switch," IEEE Signal Process. Mag., vol. 59, no. 5, pp. 55-67, Sept. 2012.
    [3] N. Gatsis and G. B. Giannakis, "Residential load control: Distributed scheduling and convergence with lost AMI messages," IEEE Trans. Smart Grid, vol. 2, no. 3, pp.1-17, Feb. 2012.
    [4] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, "Decentralized coordination of energy utilization for residential households in the smart grid," IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1341-1350, Sept. 2013.
    [5] R. Deng, Z. Yang, J. Chen, and M.-Y. Chow, "Load scheduling with price uncertainty and temporally-coupled constraints in smart grids," IEEE Trans. Power Sys., vol. 29, no. 6, pp. 2832-2834, Nov. 2014.
    [6] P. Yang, P. Chavali, E. Gilboa, and A. Nehorai, "Parallel load schedule optimization with renewable distributed generators in smart grids," IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1431-1441, Sept. 2013.
    [7] Z. Tan, P. Yang, and A. Nehorai, "An optimal and distributed demand response
    strategy with electric vehicles in the smart grid," IEEE Trans. Smart Grid, vol. 5,no. 2, pp. 861-869, March 2014.
    [8] C. Chen, J. Wang, and S. Kishore, "A distributed direct load control approach for large-scale residential demand response," IEEE Trans. Power Sys., vol. 29, no. 5, pp.2219-2228, Sept. 2014.
    [9] C.-K. Wen, J.-C. Chen, J.-H. Teng, and P. Ting, "Decentralized plug-in electric vehicle charging selection algorithm in power systems," IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1779-1789, Dec. 2012.
    [10] Z. Baharlouei and M. Hashemi, "Effciency-fairness trade-off in privacy-preserving autonomous demand side management," IEEE Trans. Smart Grid, vol. 5, no. 2, pp.799-808, March 2014.
    [11] T.-H. Chang, M. Alizadeh, and A. Scaglione, "Coordinated home energy management for real-time power balancing," in Proc. IEEE PES General Meeting, San Diego, CA, USA, July 22-26, 2012, pp. 1-8.
    [12] I. Atzeni, L. G. Ordonez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, "Demand response management with multiple utility companies: A two-level game approach," IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2454-2572, May 2013.
    [13] T.-H. Chang, M. Alizadeh, and A. Scaglione, "Real-time power balancing via decentralized coordinated home energy scheduling," IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1490-1504, Sept. 2013.
    [14] B. Chai, J. Chen, Z. Yang, and Y. Zhang, "Demand response management with
    multiple utility companies: A two-level game approach," IEEE Trans. Smart Grid,
    vol. 5, no. 2, pp. 722-731, March 2014.
    [15] T.-H. Chang, A. Nedic, and A. Scaglione, "Distributed constrained optimization by consensus-based primal-dual perturbation method," IEEE Trans. AUTOMATIC CONTROL, vol. 59, no. 6, pp. 1524-1538, June 2014.
    [16] B. Yang and M. Johansson, "Distributed optimization and games: A tutorial
    overview," Chapter 4 of Networked Control Systems, A. Bemporad, M. Heemels and
    M. Johansson (eds.), LNCIS 406, Springer-Verlag, 2010.
    [17] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, "Notes on decomposition methods," available at http://see.stanford.edu/materials/lsocoee364b08-decompositionnotes.pdf.
    [18] S. Boyd and A. Mutapcic, "Subgradient methods," available at www.stanford.edu/class/ee392o/subgrad method.pdf.
    [19] A. Giusti, M. Salani, G. A. D. Caro, A. E. Rizzoli, and L. M. Gambardella, "Restricted neighborhood communication improves decentralized demand-side load management," IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 92-101, Jan. 2014.
    [20] A. Nedic, A. Ozdaglar, , and A. Parrilo, "Constrained consensus and optimization in multi-agent networks," IEEE Trans. Auto. Control, vol. 55, no. 4, pp. 922-938, April 2010.
    [21] T.-H. Chang, A. Nedic, and A. Scaglione, "Distributed constrained optimization by consensus-based primal-dual perturbation method," IEEE. Trans. Auto. Control., vol. 59, no. 6, pp. 1524-1538, June 2014.
    [22] M. Alizadeh, A. Scaglione, and R. J. Thomas, "From packet to power switching: Digital direct load scheduling," IEEE JSAC, vol. 30, no. 6, pp. 1027-1036, July 2012.
    [23] T. T. Kim and H. V. Poor, "Scheduling power consumption with price uncertainty," IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 519-527, Sept. 2011.
    [24] Z. Wang, C. Gu, F. Li, P. Bale, and H. Sun, "Active demand response using shared energy storage for household energy management," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1888-1897, Dec. 2013.
    [25] T.-H. Chang, M. Hong, and X. Wang, "Multi-agent distributed optimization via
    inexact consensus ADMM," IEEE Trans. Signal Process., vol. 63, no. 2, pp. 482-497, Jan. 2015.
    [26] T.-H. Chang, "A randomized dual consensus admm method for multi-agent dis-
    tributed optimization," in Proc. IEEE ICASSP, Brisbane, Australia, 2015.
    [27] J.-Y. Joo and M. Ilic, "Multi-layered optimization of demand resources using Lagrange dual decomposition," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2081-2088, Dec 2013.
    [28] K. Rahbar, J. Xu, and R. Zhang, "Real-time energy storage management for re
    newable integration in microgrid: An on-line optimization approach," IEEE Trans.
    Smart Grid, vol. 6, no. 1, pp. 124-134, Jan. 2015.
    [29] D. P. Bertsekas, Dynamic Programming and Optimal Control: Vol I. Nashua, NH,
    USA: Athena Scientific, 2007.
    [30] M. Huneault and F. D. Galiana, "A survey of the optimal power flow literature," Porc. IEEE Power Systems, vol. 6, no. 2, pp. 762-770, May 1991.
    [31] E. Litviniv,"Design and operation of the locational marginal prices-based electricity markets," IET Generation, Transmission and Distribution, vol. 4, no. 2, pp. 315-323,May 2010.
    [32] T. Organogianni and G. Gross, "A general formulation for lmp evaluation," Porc. IEEE Power Systems, vol. 22, no. 3, pp. 1163-1173, Aug. 2007.
    [33] N. Li, L. Chen, and S. H. Low, "Optimal demand response based on utility maximization in power networks," in Proc. IEEE PES General Meeting, Detroit, MI,
    USA, July 24-29, 2011, pp. 1-8.
    [34] J.-Y. Joo and M. Ilic, "Multi-layered optimization of demand resources using lagrange dual decomposition," IEEE Trans. Smart Grid, vol. 4, pp. 2081-2088, 2013.
    [35] R. H. Kwon and D. Frances, "Optimization-based bidding in day-ahead electricity auction markets: A review of models for power producers," in Handbook of Networks in Power Systems I, Energy Systems, Springer-Verlag Berlin Heidelberg, 2012.
    [36] M. Alizadeh, X. Li, Z. Wang, A. Scaglione, and R. Melton, "Demand side management in the smart grid: Information processing for the power switch," IEEE Signal Processing Magazine, vol. 59, no. 5, pp. 55-67, 2012.
    [37] S. Sojoudi and S. H. Low, "Optimal charging of plug-in hybrids electric vehicles in smart grids," Power and Energy Society General Meeting, pp. 1-6, 2011.
    [38] L. Gan, U. Topcu, and S. H. Low, "Optimal decentralized protocol for electric vehicle charging," IEEE Trans. on Power System, pp. 5798-5804, 2011.
    [39] R. Malhame and C.-Y. Chong, "Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system," IEEE Transactions on Automatic Control, vol. 30, no. 9, pp. 854-860, 1985.
    [40] M. Alizadeh, T.-H. Chang, and A. Scaglione, "Grid integration of distributed renewables through coordinated demand response," in 51st IEEE Conf. Decision and control, Maui, HI, 2012, pp. 3666-3671.
    [41] K. Rahbar, R. Zhang, and C. C. Chai, "Privacy constrained energy management for self-interested microgrids," in IEEE Conf. ICASSP, Brisbane, Australia.
    [42] T.-H. Chang, M. Alizadeh, and A. Scaglione, "Coordinated home energy management for real-time power balancing," in IEEE Power and Energy Society General Meeting,San Diego, CA, USA, July 2012.
    [43] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on decomposition
    methods. [Online]. Available: http://see.stanford.edu/materials-/lsocoee364b/
    08decompositionn notes.pdf
    [44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge
    University Press, 2004.
    [45] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Echstein, Distributed Optimization and Statistical Learning via Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 2011.
    [46] T.-H. Chang. A proximal dual consensus admm method for multi-agent constrained optimization. [Online]. Available: http://arxiv.org/abs/1409.3307
    [47] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit, "Management and control of domestic smart grid technology," IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 109-119, 2010.
    [48] S. Haykin, Adaptive filter theory, 4th ed. Tom Robbins, 2002.
    [49] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, "Suppression of late reverberation effect on speech signal using long-term multiple-step linear prediction," IEEE Trans. Speech Audio Process., vol. 17, no. 4, pp. 534-545, May 2009.
    [50] A. Papavasiliou and S. S.Oren, "Stochastic modeling of multi-area wind production," 12th International Conference on Probabilitistic Method Applied to Power System, June 10-14 2012.
    [51] J. V. Paatero and P. D. Lund, "A model for generating household electricity load profiles," Int. J. Energy Res., vol. 30, pp. 273-290, 2006.
    [52] A performance calculator for gridconnected pv system. [Online]. Available:
    http://www.nrel.gov/rredc/pvwatts
    [53] M. E. Yildiz and A. Scaglione, "Coding with side information for rate-constrained consensus," IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3753-3764, 2008.
    [54] M. Grant and S. Boyd, "CVX: Matlab software for disciplined convex programming, version 2.1," http://cvxr.com/cvx, Mar. 2014.
    [55] J. Liu and J. Li, "A bi-level energy-saving dispatch in smart grid considering interaction between generation and load," IEEE Trans. on Smart Grid, vol. 6, no. 3, May 2015.
    [56] H. T. Nguyen, D. T. Nguyen, and L. B. Le, "Energy management for households
    with solar assisted thermal load considering renewable energy and price uncertainty," IEEE Trans. on Smart Grid, vol. 6, no. 1, Jan. 2015.
    [57] M. Houwing, R. R. Negenborn, and B. D. Schutter, "Demand response with micro-chip system," Proceeding of the IEEE Trans., vol. 99, no. 1, Jan. 2010.

    無法下載圖示 全文公開日期 2021/07/01 (校內網路)
    全文公開日期 2026/07/01 (校外網路)
    全文公開日期 2026/07/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE