簡易檢索 / 詳目顯示

研究生: 柳毅謙
Yi-Qian LIU
論文名稱: 脈波量測穿戴式系統親和可靠提升整合之研究
Improvement of User-friendliness and Reliability of a Wearable Pulse Measurement System
指導教授: 許昕
Hsiu Hsin
口試委員: 許維君
Wei-Chun Hsu
鮑建國
Jian-Guo Bau
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145頁
中文關鍵詞: 穿戴式裝置脈波訊號光容積變化橈動脈心血管疾病
外文關鍵詞: wearable device, pulse signal, photoplethysmography, radial artery, cardiovascular disease
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於目前穿戴式裝置的開發面臨諸多實務上的挑戰與困境,普遍無法獲得穩定可靠的PPG訊號,也因此不具備解析血管特性的能力。若是能夠逐步排除影響波形品質的干擾因素,將有助於取得更穩定可靠的PPG訊號。另外,本實驗室裝置目前主要應用於醫院場域中,已經累積多項臨床研究成果,若要應用於社區場域或其他非正式醫療場域中,由於裝置外型上的限制在使用上的便利性較低。因此若能以過去累積的成果為基礎,再更進一步改善裝置以及開發新的PPG腕帶量測,將會對心血管疾病或慢性疾病等的深入研究產生助益。
    為了改善與設計出兼具外觀、可靠性與實用度的穿戴式系統,本研究將會對實驗室舊有的系統進行改良,使改良系統更加實用美觀,同時增加穿戴式系統的親和與可靠性。將會達成以下幾點:
    (1) 以實驗室舊有的系統為基礎,改善並設計出更便利實用且可靠美觀的穿戴式系統,並能應用於社區及一般非專業醫療場域。
    (2) 尋找與確立可能對PPG波形造成的干擾因素。
    (3) 驗證設計的PPG腕帶能否部分取代力學式BP腕帶。
    (4) 建立雙光學式量測系統,包含PPG腕帶與改良PPG指環,藉此比較上下游動脈的脈波差異,以評估脈波衰減情況。
    因此,在系統改良完成後,為了檢測改良後的系統效能是否較舊有系統佳,並且驗證本研究設計的PPG腕帶之實用性等,本研究設計以下三項實驗驗證:
    (1) 驗證BP改良電路與PPG改良電路效能實驗
    (2) PPG腕帶與BP腕帶相關性比較實驗
    (3) PPG指環與PPG腕帶的上下游比對實驗
    為了確保改良電路的使用效能比舊有電路更好,設計實驗進行五項比較,包含訊雜比、濾波器效能、擷取訊號頻譜分析、可靠度,與再現性比較。並檢驗PPG腕帶與BP腕帶的相關性,評估兩者的關聯。採用PPG腕帶與指環同時量測的方式,比較兩者間的波形頻譜差異及相關性,藉此得知上下游動脈的衰減效率。
    實驗結果表示,本研究改良之電路與舊電路相比其訊雜比更好、更可靠,並且在頻譜分析上更具備優勢。同時PPG腕帶與BP腕帶的頻譜相關性在2至10諧波均有R2高於0.6的高度相關性,表示本研究開發PPG腕帶可以部份取代BP腕帶。在評估上下游動脈的衰減效率中,結果顯示Ratio在所有諧波上均有明顯差異,CV、Angle等參數則在特定諧波上也有明顯變化,若能持續完善相關測試,將能夠應用於更多心血管疾病與其他慢性疾病的早期偵測達成早期預防的目標。
    上述結果可得以下結論:
    (1) 改良舊有BP電路與PPG電路,經過實驗全面評估確認改良電路效能優於舊電路。整合硬體系統改良外觀,達成裝置能用於於一般及社區場域。
    (2) 委託洽富科技一同改良舊有PPG指環外觀,並開發設計PPG腕帶,讓收案工作能有更多選擇,在BP腕帶量測不到時,能夠使用PPG腕帶做為替代。
    (3) 確立與找尋可能對PPG波形造成的干擾因素。
    (4) 使用PPG腕帶時,若遇到橈動脈血管較深的受測者,可以使用手掌向下量測姿勢,可能可以解決PPG訊號量測不到的問題,並且頻域分析結果顯示Ratio成分不受影響。
    (5) 經過實驗驗證PPG腕帶與BP腕帶有高相關性,2至10諧波的相關係數均高於0.6,代表兩者間具有高度相關。
    (6) 藉由PPG腕帶與PPG指環的實驗結果得知,手腕橈動脈至手指小動脈與微血管時,其Ratio、CV、Angle的影響與差異以及相關性。可以作為之後研究血液循環特性的指標。

    因此,在達成以上結論後,在社區及一般場域中使用本研究所改良的穿戴式裝置將能夠更便利於收案,開發設計的PPG腕帶也能夠使收案多一項選擇,讓收案更有效率。並且找出多項對PPG波型的影響因素,讓後面的使用者或改良者能夠了解變因,從而知道量測時注意的要素,才能夠收取完好的PPG波型進行後續的分析。並藉由PPG腕帶與PPG指環的實驗結果,待後續實驗完善後,能夠作為血液循環特性的指標。

    關鍵字:穿戴式裝置、脈波訊號、光容積變化、橈動脈、心血管疾病


    Given that the development of the wearable measurement device is now facing many challenges and difficulties in practice, it is incapable to acquire stable and reliable PPG signal, as well as to analyze vascular features through the existent device. Therefore, if the confounding factors influencing the quality of waveform can be eliminated, the PPG signal will become more stable and reliable. In addition, the device of this laboratory has already applied in various medical practices and accumulated bountiful clinical practice results, whereas due to the limitation of the appearance, it is not very convenient to be utilized in communities or other non-medical fields. For this reason, if the study could further revise and improve the original device and invent a new PPG wrist-based measurement on the basis of the previous achievement of the laboratory, it will contribute to more in-depth research for cardiovascular disease and other chronic disease in the future.
    In order to improve and invent a more user-friendly and artistic wearable measurement system, this study will focus on improving the original system in the laboratory to enhance its reliability, user-friendliness and aesthetics. The new wearable system will accomplish several points mentioned below.
    (1) Improving the original system in the laboratory and designing a more user-friendly and reliable wearable system, which can be applied to communities and other non-medical fields.
    (2) Finding out and ensuring the confounding factors, which might influence the quality of waveform, for instance, the measurement posture and conditions, to ensure the reliability of the pulse wave and provide a well foundation for the following spectrum and AI analysis.
    (3) Ensuring that the new PPG wristband is able to partly replace the mechanical BP one.
    (4) Establishing optical measurement system, including PPG wristband and revised PPG finger-ring, to compare the pulse wave difference between upstream and downstream arteries and evaluate the attenuation effect.

    After the improvement of the system, in order to verify whether the revised device performs better than the original one, and prove the reliability of the newly designed PPG wristband, the study adopts three validation tests mentioned below.
    (1) The performance experiment of the verification of BP improved circuit and PPG improved circuit
    (2) The comparison experiment of the correlation between PPG wristband and BP wristband
    (3) The comparison experiment of the upstream and downstream between the PPG finger-ring and PPG wristband
    In order to ensure the efficacy of the improved circuit being better than the original one, the study conducts five comparison experiments, including signal-to-noise ratio, the efficacy of wave filter, spectral density, reliability and reproducibility. Then the study tests the correlation between PPG wristband and BP wristband to evaluate the association between the two. Besides, the study measures the PPG wristband and finger-ring simultaneously to compare the difference and correlation of the waveform spectrum to know the attenuation effect between the upstream and downstream arteries.
    Experimental results show that the revised circuit in this study actually performs better and has advantage in signal-to-noise ratio, reliability and spectrum analysis, compared to the original one. Moreover, in harmonic number 2nd to 10th, the spectrum correlation index (R2) of PPG wristband and BP wristband is higher than 0.6, which indicates the high correlation between these two devices. The figure implies that the newly-designed PPG wristband in the study can partly replace the BP wristband. In the evaluation of attenuation effect between the upstream and downstream arteries, the result points out that Ratio performs differently among all the harmonic numbers, while CV, Angle and other parameters show obvious variation in specific harmonic numbers. If the measurement system can be continuously enhanced and improved based on this study results, it will be able to be applied to the early detection of more cardiovascular cases and achieve the goal of primary prevention.

    Based on previous results, the study comes to several conclusions as below.
    (1) The study improves the original BP circuit and PPG circuit, and verify that the improved circuit performs better than the original one through comprehensive experimental evaluation. Then the study also integrates the hardware system and revises the appearance of the device to make it applicable to non-medical fields.
    (2) The study cooperates with CHEER FOUR TECHNOLOGY COMPANY to improve the appearance of the original PPG finger-ring, and design a new PPG wristband, which provides alternatives for the cases acceptance process.
    (3) The study finds out and ensures the confounding factors, which might influence the quality of PPG waveform.
    (4) While using the PPG wristband, if the radial artery of the respondent is in a deeper place, which leads to the difficulty of receiving the PPG signal, the pronation position could be adopted to solve the measurement problem. In addition, it is proved by the spectral density results that the Ratio would not be affected by this way of measurement.
    (5) Through the experiment the study finds out that the spectrum correlation index, R2, of PPG wristband and BP wristband is higher than 0.6 in harmonic number 2nd to 10th, which indicates the high correlation between these two devices.
    (6) Through the experimental results of the PPG wristband and finger-ring, the study finds the influence, difference and correlation of Ratio, CV and Angle between the radial artery, and the acral finger arterioles and capillary.
    Therefore, after reaching the conclusions above, applying this wearable device improved by the study to the communities or other non-medical fields would make the cases acceptance more convenient. In addition, the newly-designed PPG wristband would also provide the cases acceptance an alternative tool, which makes the working process more efficient. The study also figures out several confounding factor, which might influence the quality of PPG waveform. That findings inform the following users or reformers the variable, as well as the noteworthy points during the measurement, which is beneficial to acquire high-quality PPG waveform for the subsequent analysis. As a result, if the experiment of PPG wristband and PPG finger-ring could be continuously refined by the followers, it would become an index for the feature of circulating blood.

    Keywords: wearable device, pulse signal, photoplethysmography, radial artery, cardiovascular disease

    目錄 論文摘要 I Abstract III 誌謝 VI 表索引 VIIII 圖索引 IXII 第一章. 緒論 1 1.1. 研究背景 1 1.1.1. 穿戴式裝置 1 1.1.2. 心血管疾病 3 1.1.3. 市售心血管健康狀態評估的穿戴式裝置 4 1.1.4. 目前心血管健康狀態評估之穿戴式裝置的侷限與困難 7 1.1.5. 循環量測與心血管疾病早期偵測 9 1.1.6. 裝置使用者與社區場域民眾回饋 10 1.2. 研究動機與目的 11 第二章. 系統介紹與裝置改良 12 2.1 分析參數介紹 13 2.2 系統硬體改良 15 2.2.1 BP擷取電路改良(Blood Pressure Waveform,BPW) 16 2.2.2 PPG擷取電路改良(Photoplethysmography,PPG) 22 2.2.3 整合電路板設計 35 2.2.4 硬體系統外觀改良設計 37 2.3 PPG指環外觀改良設計 42 2.3.1 ITR8307元件介紹 43 2.3.2 初版新指環設計 44 2.3.3 測試初版指環效能實驗 46 2.3.4 二版新指環設計 50 2.3.5 測試二版指環效能實驗 51 2.3.6 三版新指環設計 60 2.4 PPG腕帶規劃與設計 61 2.5 PPG波型的影響因素 64 2.5.1 量測電路影響 65 2.5.2 感測器量測條件 66 2.5.3 量測姿勢與座位定位 67 第三章. 實驗設計 77 3.1 驗證BP改良電路與PPG改良電路效能實驗設計 78 3.1.1 BP與PPG新舊電路訊雜比比較 79 3.1.2 BP與PPG新舊電路濾波器效能比較 79 3.1.3 新舊電路頻域參數分析、可靠度、再現性比較 80 3.2 PPG腕帶與BP腕帶比較相關性實驗設計 82 3.3 PPG腕帶與指環比對上下游差異實驗設計 84 第四章. 實驗結果與討論 85 4.1 BP舊電路與BP改良電路效能比對 86 4.1.1 BP新舊電路訊雜比比較 86 4.1.2 BP新舊電路濾波器效能比較 88 4.1.3 BP新舊電路頻譜分析比較 90 4.1.4 BP新舊電路可靠度分析 92 4.1.5 BP新舊電路再現性分析 95 4.2 PPG舊電路與PPG改良電路效能比對 98 4.2.1 PPG新舊電路訊雜比比較 98 4.2.2 PPG新舊電路濾波器效能比較 100 4.2.3 PPG新舊電路頻譜分析比較 102 4.2.4 PPG新舊電路可靠度分析 104 4.2.5 PPG新舊電路再現性分析 107 4.3 PPG腕帶與BP腕帶的相關性比對 110 4.4 PPG腕帶與指環比對上下游差異比較 114 第五章. 結論 121 第六章. 未來展望 122 第七章. 參考文獻 123

    第七章. 參考文獻
    [1] Digitimes.穿戴式裝置.Retrieved from https://www.digitimes.com.tw/tech/rpt/rpt_show.asp?cnlid=3&cat=&v=20200416-85
    [2] Grand view research. Wearable Technology Market Size, Share & Trends Analysis Report By Product (Wrist-wear, Eye-wear & Head-wear, Foot-wear, Neck-wear, Body-wear), By Application, By Region, And Segment Forecasts, 2020 – 2027.Retrieved from https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
    [3] 康健雜誌 特刊第26期.(2012). Retrieved from https://www.commonhealth.com.tw/article/article.action?nid=72096&from=search
    [4] 衛生福利部統計處.(2020). 109年國人死因統計結果. Retrieved from https://dep.mohw.gov.tw/DOS/lp-5202-113.html
    [5] Pulse Smart. Product Introduction. Retrieved from http://medi-core.com/en/hrv/smart_pulse.html?ckattempt=1
    [6] 維基百科, 標準心電圖.Retrieved from
    https://zh.wikipedia.org/wiki/%E5%BF%83%E7%94%B5%E5%9B%BE#/media/File:SinusRhythmLabels.svg
    [7] FIRSTBEAT. What Is Heart Rate Variability (HRV) & Why Does It Matter? Retrieved from
    https://www.firstbeat.com/en/blog/what-is-heart-rate-variability-hrv/
    [8] 高雄醫學大學產學營運處. 自主神經功能評估. Retrieved from https://ooiuc.kmu.edu.tw/index.php/zh-TW/
    [9] Yuka Maeda, Masaki Sekine, Toshiyo Tamura. 2010. The Advantages of Wearable Green Reflected Photoplethysmography. Journal of Medical Systems. Vol.35(5):829-834.
    [10] Joerg Heerlein, Tilman Ruegheimer. 2014. LED-based sensors for wearable fitness trackers. EETIMES.

    [11] Gabriele B Papini, Pedro Fonseca, Merel M van Gilst, Jan WM Bergmans,Rik Vullings and Sebastiaan Overeem.2020. Respiratory activity extracted from wrist-worn reflective photoplethysmography in a sleep-disordered population. Physiol. Meas. 41 (2020) 065010.
    https://iopscience.iop.org/article/10.1088/1361-6579/ab9481
    [12] 胡君陽(2017)。改善運動中手腕型PPG心率測量。國立中央大學電機工程學系碩士論文,桃園市。
    [13] John Allen. 2007. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28 (2007) R1–R39. doi:10.1088/0967-3334/28/3/R01
    [14] 宋巧娟(2016)。循環量測指標應用於冠狀動脈狹窄疾病之研究。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [15] 許家良(2014)。血壓波形的諧波分析應用於多囊性卵巢及中風之偵測及療效評估研究。國立臺灣科技大學應用科技研究所博士論文,台北市。
    [16] 劉人銘(2018)。循環量測應用於服用高血壓藥物患者之研究。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [17] 陳均曄(2019)。非侵入式循環訊號量測系統應用於不同癌症之偵測與評估。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [18] 楊舒涵(2015)。都卜勒微循環血流與動脈血壓波形指標 應用於代謝症候群之研究。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [19] 楊長仁(2020)。穿戴式脈波量測系統結合機器學習於社區民眾血管狀態評估。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [20] 呂宗哲(2019)。建立穿戴式橈動脈光容積量測系統以評估血壓與供血功能。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [21] 蔡宏琪(2015)。非侵入式循環生理參數量測分析系統之研製。國立臺灣科技大學醫學工程研究所碩士論文,台北市。
    [22] 億光電子, ITR8307 Datasheet. Retrieved from https://datasheet.lcsc.com/szlcsc/Everlight-Elec-ITR8307-L24-TR8-TS_C181894.pdf

    無法下載圖示 全文公開日期 2026/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE