簡易檢索 / 詳目顯示

研究生: 江峵毅
Hong-Yi Jiang
論文名稱: 高速頁寬式半導體雷射技術應用於TPU粉末之晶格結構列印分析
High Speed Page-Wide Diode Laser Technology Applied to TPU Powder Lattice Structure Printing Analysis
指導教授: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-hua Hsieh
口試委員: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-hua Hsieh
林上智
Shang-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 高速積層製造頁寬式雷射雷射光斑晶格結構
外文關鍵詞: High speed additive manufacturing, Page wide lasers, Laser spot size, Lattice Structure
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造技術已經在工業領域客製化、複雜結構、輕量化與最佳化設計證實了它的價值,現今產業功能性產品需求逐漸朝向客製化改善機械性質。雖然積層製造技術具有節省材料、低能源損耗、可實行數位加工與列印複合材料之元件,但是列印速度緩慢是目前積層製造技術最大的缺點之一。
    本研究旨在利用已開發之多雷射頁寬式高速列印技術進行圖案化列印測試,該技術捨棄以往市售的單雷射搭配掃描振鏡之選擇性雷射燒結技術。採用320顆波長915 nm、功率10 W之半導體雷射搭配準直透鏡,將透鏡特殊排列後再藉由控制模組控制雷射開關順序,列印載台只需移動單一行程即可完成單層大面積圖案化粉末燒結。突破積層製造列印速度慢的缺點,達成客製化與高速量產之目標。
    本研究將先前頁寬式雷射列印機遇到雷射源與透鏡損壞之問題進行光學系統改善與重新建置,確認320顆雷射正常運作,再透過雷射光學模組校正雷射光斑大小不一致與光斑位置歪斜等問題。利用黑色西卡紙進行圖案掃描測試,首先以單一雷射掃描線測量線寬驗證雷射光斑尺寸,並探討頁寬式雷射系統對於複雜圖案輪廓掃描精細度極限。
    使用西卡紙驗證完圖案化掃描後,選用積層製造常用之自製TPU複合粉末進行圖案化燒結測試。使用簡單圖形尋找頁寬式雷射列印機適合TPU複合粉末最佳之雷射列印參數,接著與市售的3D列印機比較列印晶格結構所需時間,驗證頁寬式雷射高速列印機能在短時間內列印更多的複雜物件。


    Additive manufacturing (AM) has proven its worth for its applications in almost every industry for manufacturing intricate, complex, lightweight, and optimized designs. Recently, the demand for industrial functional components is gradually moving towards customization with improved mechanical properties. Although AM has the advantages of almost zero material wastage, low energy consumption, digital processing, and printing of products with multi-materials but the slow printing speed is one of the biggest drawbacks of the current AM technology.
    The objective of this study is to use the developed multi-laser page-wide high-speed printing technology for pattern printing tests, which abandons the previous commercially available selective laser sintering method of single laser and scanning mirror. In the new setup, large areas of patterned powder only need to move a single stroke to complete a single layer using 320 semiconductor lasers with a wavelength of 915 nm, power of 10 W, and a special arrangement of collimating lenses. The laser switching sequence is controlled by the control module. This results to overcome the shortcomings of the slow printing speed of AM and achieving the goals of customization and high-speed mass production.
    In the presented work, the optical system of the previously developed page-wide laser printer was improved and reconstructed due to the damage to the laser sources and its lens. It was also confirmed that all the lasers worked in a stable way, and corrections/adjustments can be made through the laser optical module for the inconsistent and skewed spot size. The pattern scanning test was carried out using black paper so that maximum energy can be utilized to fuse the layer of the powder. First, a single laser scanning line was used to measure the line width to verify the laser spot size and the limit of the scanning accuracy/surface finish of the page-wide laser system for complex pattern contours.
    After verifying the pattern scanning with sika paper, composite TPU powder was used for the pattern sintering test as it is more commonly used in AM. The optimal laser printing parameters of the page-wide laser printing module were achieved using simple graphics. Compare the time required to print the lattice structure with a commercially 3D printer to verify the page wide laser high-speed printers can print more complex objects in a short time.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 實驗流程 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 積層製造技術 5 2.2 粉床熔融成型技術 6 2.3 高速積層製造 8 2.4 半導體雷射原理 13 2.5 雷射光斑對於列印尺寸精度之影響 14 2.5.1 雷射光斑尺寸 (Laser Spot Size) 14 2.5.2 SLS成品尺寸誤差 17 2.6 功能性晶格結構設計 20 第三章 頁寬式雷射光學模組優化設計 22 3.1 頁寬式雷射列印機架構與光學模組介紹 22 3.2 光學系統介紹與改良 32 3.2.1 光纖線路改善 32 3.2.2 單一雷射光學模組改良 37 3.2.3 頁寬式雷射光學模組架設 43 3.2.4 頁寬式雷射離焦光斑尺寸與光斑重疊率計算 48 3.3 頁寬式雷射光學模組圖案化分析 49 3.3.1 點定位分析 49 3.3.2 水平線掃描分析 51 3.3.3 同心方形準確度 54 3.3.4 複雜圖案測試 55 3.4 頁寬式雷射圖案化準確度測試 58 第四章 頁寬式雷射應用於TPU晶格結構列印分析 60 4.1 以TPU粉末進行雷射離焦燒結分析 60 4.1.1 不同預熱溫度焦距之下雷射掃描線寬 60 4.1.2 固定預熱溫度焦距之上雷射線寬分析 63 4.1.3 改善頁寬式雷射列印件品質 64 4.2 TPU粉末二維圖案列印分析 66 4.3 探討商用3D列印機台與頁寬式雷射高速列印機應用於TPU晶格結構列印速度比較 71 4.3.1 熔融沉積成型技術 72 4.3.2 選擇性雷射燒結技術 (SLS) 73 4.3.3 多噴頭射流熔融高速3D列印 76 4.3.4 頁寬式雷射高速3D列印 77 4.3.5 市售3D列印機列印速度比較 80 第五章 結論與未來展望 84 5.1 結論 84 5.2 未來展望 85 參考文獻 86

    [1] 鄭正元, “3D 列印—積層製造技術與應用(第二版),” 全華圖書, 2021.
    [2] M.Leary, “Powder bed fusion,” Des. Addit. Manuf., pp. 295–319, Jan.2020, doi: 10.1016/B978-0-12-816721-2.00011-7.
    [3] B.Soundararajan, D.Sofia, D.Barletta, andM.Poletto, “Review on modeling techniques for powder bed fusion processes based on physical principles,” Addit. Manuf., vol. 47, no. September, p. 102336, 2021, doi: 10.1016/j.addma.2021.102336.
    [4] F.Lupone, E.Padovano, F.Casamento, andC.Badini, “Process phenomena and material properties in selective laser sintering of polymers: A review,” Materials (Basel)., vol. 15, no. 1, 2022, doi: 10.3390/ma15010183.
    [5] E.Hopkinson N, Erasenthiran P, “High Speed Sintering – Early Research into a New Rapid Manufacturing Process 312,” 2004 Int. Solid Free. Fabr. Symp., 2004.
    [6] H. R.Thomas, N.Hopkinson, andP.Erasenthiran, “High speed sintering - Continuing research into a new rapid manufacturing process,” 17th Solid Free. Fabr. Symp. SFF 2006, pp. 682–691, 2006.
    [7] “Schematic of Multi Jet Fusion (MJF) process: (a) HP 3D 4200 printer... | Download Scientific Diagram.” https://www.researchgate.net/figure/Schematic-of-Multi-Jet-Fusion-MJF-process-a-HP-3D-4200-printer-showing-fusing_fig2_331599125
    [8] 陳逸嘉, “頁寬式半導體雷射模組應用於積層製造之系統開發,” 國立臺灣科技大學, 2020.
    [9] 李侯慶, “多雷射模組3D列印機台設計開發與製程參數分析,” 國立臺灣科技大學, 2020.
    [10] 黃智凱, “頁寬式半導體雷射高速積層製造系統光學模組設計與製作暨聚丙烯粉末製程參數研究,” 國立臺灣科技大學, 2021.
    [11] 謝子楡, “頁寬式半導體雷射高速積層製造系統 機構設計與製作暨 ABS 製造應用,” 國立臺灣科技大學, 2021.
    [12] 劉紹麒, “頁寬式多雷射模組之高速積層製造技術 開發於 TPEE 研究,” 國立臺灣科技大學, 2021.
    [13] 林三寶, 雷射原理與應用: 全華圖書. 2008.
    [14] “光鏈路基本原件(光源).” https://blog.xuite.net/rfog/concept/77803456-光鏈路基本原件%28光源%29
    [15] “Laser beam divergence and spot size (Theory) : Laser Optics Virtual Lab : Physical Sciences : Amrita Vishwa Vidyapeetham Virtual Lab.” https://vlab.amrita.edu/index.php?brch=189&cnt=1&sim=342&sub=1
    [16] “How to convert FWHM measurements to 1/(e^2) halfwidths – Knowledgebase.” https://support.zemax.com/hc/en-us/articles/1500005488161-How-to-convert-FWHM-measurements-to-1-e-2-halfwidths
    [17] “Gaussian Beam Propagation | Edmund Optics.” https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/
    [18] Z.Zeng, X.Deng, J.Cui, H.Jiang, S.Yan, andB.Peng, “Improvement on selective laser sintering and post-processing of polystyrene,” Polymers (Basel)., vol. 11, no. 6, 2019, doi: 10.3390/polym11060956.
    [19] J.Jhabvala, E.Boillat, T.Antignac, andR.Glardon, “On the effect of scanning strategies in the selective laser melting process,” Virtual Phys. Prototyp., vol. 5, no. 2, pp. 99–109, 2010, doi: 10.1080/17452751003688368.
    [20] L.Zhang, S.Zhang, H.Zhu, Z.Hu, G.Wang, andX.Zeng, “Horizontal dimensional accuracy prediction of selective laser melting,” Mater. Des., vol. 160, pp. 9–20, 2018, doi: 10.1016/j.matdes.2018.08.059.
    [21] K.Senthilkumaran, P. M.Pandey, andP. V. M.Rao, “Influence of building strategies on the accuracy of parts in selective laser sintering,” Mater. Des., vol. 30, no. 8, pp. 2946–2954, 2009, doi: 10.1016/j.matdes.2009.01.009.
    [22] K.Senthilkumaran, P. M.Pandey, andP. V. M.Rao, “Influence of building strategies on the accuracy of parts in selective laser sintering,” Mater. Des., vol. 30, no. 8, pp. 2946–2954, Sep.2009, doi: 10.1016/J.MATDES.2009.01.009.
    [23] N.Raghunath andP. M.Pandey, “Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering,” Int. J. Mach. Tools Manuf., vol. 47, no. 6, pp. 985–995, 2007, doi: 10.1016/j.ijmachtools.2006.07.001.
    [24] C.Bhat, A.Kumar, andJ. Y.Jeng, “Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures,” Addit. Manuf., vol. 47, no. April, p. 102326, 2021, doi: 10.1016/j.addma.2021.102326.
    [25] C.Bhat, A.Kumar, S.-C.Lin, andJ. Y.Jeng, “A Novel Bio-Inspired Advanced Functional Architectured Materials with Interlocking Designs for Multi-Functional Properties,” SSRN Electron. J., vol. 58, no. 43, p. 103052, 2022, doi: 10.2139/ssrn.4122442.
    [26] “DO YOU WANT TO MEASURE THE FOCAL SPOT SIZE OR THE BEAM DIAMETER?” https://www.gentec-eo.com/blog/spot-size-of-laser-beam
    [27] “Laser Beam Measurement Vocabulary”, [Online]. Available: www.ophiropt.com/photonics
    [28] “Flashforge Creator Pro 3D Printer.” https://www.flashforge.com/product-detail/flashforge-creator-pro-3d-printer (accessed Sep.06, 2022).
    [29] “Sinterit Lisa SLS 3D印表機.” https://3dmart.com.tw/shop/sinterit-lisa (accessed Sep.06, 2022).

    無法下載圖示 全文公開日期 2027/09/27 (校內網路)
    全文公開日期 2027/09/27 (校外網路)
    全文公開日期 2027/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE