簡易檢索 / 詳目顯示

研究生: 陳柔羽
Rou-Yu Chen
論文名稱: 以現場可程式化閘陣列實現內建自我測試數位至時間轉換器
Built-in Self-Test for FPGA DTC
指導教授: 陳伯奇
Po-Ki Chen
黃仁宏
Jen-Hong Huang
口試委員: 盧志文
Chih-Wen Lu
鍾勇輝
Yung-Hui Chung
林昌鴻
Chang-Hong Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 144
中文關鍵詞: 內建自我測試現場可程式化閘陣列數位至時間轉換器時間至數位轉換器自動化測試設備鎖相迴路
外文關鍵詞: Built-in Self-Test, Field Programmable Gate Array, Digital-to-Time Converter, Time-to-Digital Converter, Automatic Test Equipment, Phase-Locked Loop
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計一個具備寬動態範圍與高解析度三維數位至時間轉換器架構,同時提出一個以延遲迴繞法設計的時間至數位轉換器,組成一個具備內建自我測試(Built-In Self Test, BIST)電路的數位至時間轉換器,並成功將整體電路實現於現場可程式化閘陣列(Field Programmable Gate Array, FPGA) Altera Arria 10 開發板。鎖相迴路(Phase-Locked Loop, PLL)以及延遲迴繞(Wrapping)效應為本論文所使用之兩大主要方法,利用PLL之負迴授特性,降低PVT變異帶來的影響,並且利用延遲迴繞,使經過延遲線後產生的延遲相位能夠盡量平均分佈,加上後續的靜態時序分析、量測排序與校正等方法,使延遲相位能更接近理想狀態。
搭配所提出之自動量測方法以大數法則(Law of large numbers)之原理,將量測結果多次加總平均以抑制誤差,並通過不同量測方式將所提出之自我測試電路與市售示波器可達成的量測相互比較,為自動化測試設備(Automatic Test Equipment, ATE)與內建自我測試研發提供嶄新、高效且低成本的實現方式。最終,此高解析度三維數位至時間轉換器,在示波器Tektronix DPO7040測量下,積分非線性誤差(Integral Nonlinearity, INL) 為-1.5~2.9LSB,差分非線性誤差(Differential Nonlinearity, DNL)為-3~3.1 LSB;使用自我測試電路搭配圖形化人機介面化量測,其INL及DNL分別為-2.6~2.7 LSB和-2.9~3.7 LSB;使用自我測試電路搭配pyserial量測以擺脫圖形化人機介面的箝制,其INL及DNL分別為-2.1~2.6 LSB和-3~3.8LSB,效果相近,但可大幅縮短校正時間。


This thesis presents the design of a three-dimensional digital-to-time converter (DTC) with a wide dynamic range and high resolution. Also, it proposes a time-to-digital converter (TDC) implemented with delay line structure to be the built-in self-test (BIST) circuit for the mentioned DTC. The entire circuit is successfully implemented on a field-programmable gate array. Specifically, there are two main techniques employed in this thesis which are the Phase-Locked Loop (PLL) and the delay wrapping mechanism. The PLL utilizes its negative feedback to mitigate the impact of process, voltage, and temperature (PVT) variations. The delay wrapping mechanism is utilized to enhance the resolution. An automatic measurement methodology is proposed leveraging the principle of the Law of Large Numbers to improve the accuracy. A large number of measurements for each DTC input are accumulated and averaged to suppress errors. As a result, to measure the proposed three-dimensional DTC presented using the Tektronix DPO7040 oscilloscope, it exhibits an INL ranging from -1.5 to 2.9LSB and DNL ranging from -3 to 3.1 LSB. By utilizing automated measurement techniques with a graphical user interface (GUI), the INL and DNL are further improved to -2.6 to 2.7 LSB and -2.9 to 3.7 LSB, respectively. Additionally, using the pyserial technique to get rid of GUI, the INL, DNL are improved to -2.1~2.6 LSB, -3~3.8LSB and the measurement time is redcuced substantially.

摘 要 I ABSTRACT II 誌 謝 IV 目 錄 V 圖目錄 VII 表目錄 XI 第1章 1 1-1 研究動機 1 1-2 論文架構 2 第2章 3 2-1 時間至數位轉換電路簡介 3 2-2 時間至數位轉換電路之架構介紹與說明 9 2-2-1 計數器法之時間至數位轉換電路 9 2-2-2 延遲線式之時間至數位轉換電路 11  抽頭式延遲線之時間至數位轉換電路 11  鏈結構延遲線之時間至數位轉換電路 14  合併延遲鏈之時間至數位轉換電路 17 第3章 19 3-1 數位至時間轉換電路簡介 19 3-2 數位至時間轉換電路之架構介紹與說明 21 3-2-1 延遲線架構之絕對時間延遲型數位至時間轉換電路 21 3-2-2 延遲矩陣架構之相對時間延遲型數位至時間轉換電路 23 3-2-3 以全數位式設計之數位至時間轉換電路 25 3-2-4 游標卡尺計數器DTC 27 第4章 30 4-1 自我測試電路中數位至時間轉換電路架構說明 30 4-2 時間至數位轉換電路架構概念說明 34 4-3 以鎖相迴路建構延遲矩陣 36 4-3-1 雙倍資料率 36 4-3-2 二維鎖相迴路延遲矩陣 37 4-3-3 精密相位分割技術 39 4-3-4 以鎖相迴路建構延遲矩陣之數位至時間轉換器 43 4-3-5 以精密相位分割技術改良之數位至時間轉換電路 44 4-3-6 以雙鎖相迴路技術之數位至時間轉換器 47 4-3-7 以動態相移功能實現之數位至時間轉換電路 48 4-3-8 以鎖相迴路建構延遲矩陣之時間至數位轉換器 49 4-4 延遲迴繞法以及排序與選擇機制 52 4-4-1 延遲迴繞法之概念與問題 52 4-4-2 以延遲迴繞法為基礎實現的延遲線之佈局 56  階層式(Hierarchy)模組化增量編譯工具 56  利用增量編譯(Incremental Compile)協助延遲線設計 57  延遲級至計數器間繞線佈局 58  控制延遲元件的擺放位置 61 4-4-3 脈衝縮放應用與延遲線設計 63 4-4-4 延遲迴繞效應設計及應用 64 4-4-5 相位排序與選擇機制 66 4-5 延遲迴繞法時間至數位轉換器 70 第5章 73 5-1 內建自我測試電路架構介紹與說明 73 5-2 具內建自我測試電路之數位至時間轉換器 74 5-2-1 高精度、低元件使用率之多維延遲數位至時間轉換器 75 5-2-2 內建自我測試電路 78 5-2-3 計數器電路 83  漣波計數器 83  同步計數器 85  強森計數器 86 5-3 加總取值電路 88 5-4 通用型非同步收發傳輸器與CRC驗證邏輯 89 5-5 精細內插相位偏移控制器 95 5-6 控制字組暫存器 97 第6章 100 6-1 FPGA開發平台簡介 100 6-2 量測儀器簡介 101 6-3 時間至數位轉換電路之量測結果 103 6-3-1 量測環境建立 103  SikuliX圖形介面化裝置 104  pySerial序列埠接收與傳輸 105  LVDS 傳輸介面與介面轉換板 106 6-3-2 量測結果 107  DTC中細級整體輸出結果 108  以示波器Tektronix DPO7040量測之DTC中細級輸出結果 109  以自我測試電路量測之DTC中細級輸出結果(使用SikuliX) 110  以自我測試電路量測之DTC中細級輸出結果(使用pySerial) 112  以示波器Tektronix DPO7040量測之DTC跨粗級輸出結果 114  以自我測試電路量測之DTC跨粗級輸出結果(使用SikuliX) 115  以自我測試電路量測之DTC跨粗級輸出結果(使用pySerial) 116  數位至時間轉換器粗級量測結果 118  長時間穩定度量測 120 6-3-3 量測總結 121 第7章 124 7-1 總結及未來展望 125 參考文獻 125

[1] S. Yousif and J. W. Haslett, "A Fine Resolution TDC Architecture for Next Generation PET Imaging," IEEE Transactions on Nuclear Science, vol. 54, no. 5, pp. 1574-1582, 2007
[2] W. W. Moses , S. Buckley, C. Vu, Q. Peng, N. Pavlov, W.S. Choong, J. Wu, and C. Jackson, "OpenPET: A Flexible Electronics System for Radiotracer Imaging," IEEE Transactions on Nuclear Science, vol. 57, no. 5, pp. 2532-2537, 2010
[3] G. Sportelli, N. Belcari , P. Guerra , F. Spinella , G. Franchi , F. Attanasi , S. Moehrs , V. Rosso , A. Santos , and A. Del Guerra,"Reprogrammable Acquisition Architecture for Dedicated Positron Emission Tomography," IEEE Transactions on Nuclear Science, vol. 58, no. 3, pp. 695-702, 2011
[4] J. Chapman, J. Currin, and S. Payne, "A low-cost high-performance CMOS timing vernier for ATE," in Proceedings of 1995 IEEE International Test Conference (ITC), 1995, pp. 459-468
[5] Y. Miyake, S. Kajihara, and P. Chen, "On-Chip Test Clock Validation Using A Time-to-Digital Converter in FPGAs," in 2019 IEEE International Test Conference in Asia (ITC-Asia), 2019, pp. 157-162
[6] T. Otsuji, "A picosecond-accuracy, 700-MHz range, Si bipolar time interval counter LSI," IEEE Journal of Solid-State Circuits, vol. 28, no. 9, pp. 941-947, 1993
[7] K. Ealgoo, L. Hansang, L. Taeyon, C. Dongbum, and P. Jaehong, "Time of flight (TOF) measurement of adjacent pulses," in 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310), 2001, vol. 1, pp. 609-612 vol.1
[8] K. Maatta and J. Kostamovaara, "A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications," IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 2, pp. 521-536, 1998
[9] N. Paschalidis, N. Stamatopoulos, K. Karadamoglou, G. Kottaras, V. Paschalidis, E. Sarris, B. Andrews, R. McEntire, S. Jaskulek, D. Mitchell,and R. McNutt "A time-of-flight system on a chip suitable for space instrumentation," in 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310), 2001, vol. 2, pp. 750-754 vol.2
[10] P. Palojarvi, K. Maatta, and J. Kostamovaara, "Integrated time-of-flight laser radar," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 4, pp. 996-999, 1997
[11] H. Brockhaus and A. Glasmachers, "Single particle detector system for high resolution time measurements," IEEE Transactions on Nuclear Science, vol. 39, no. 4, pp. 707-711, 1992
[12] A. H. Chan and G. W. Roberts, "A jitter characterization system using a component-invariant Vernier delay line," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 1, pp. 79-95, 2004
[13] "FLUX All-in-one 3D Printer, 3D Scanner, Laser Engraver." https://3dprintboard.com/showthread.php?
[14] P. Napolitano, A. Moschitta, and P. Carbone, "A survey on time interval measurement techniques and testing methods," in 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010, pp. 181-186
[15] "IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters," IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp. 1-139, 2011
[16] R. Nutt, "Digital Time Intervalometer," Review of Scientific Instruments, vol. 39, no. 9, pp. 1342-1345, 1968/09/01 1968
[17] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, "Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 1, pp. 51-55, 1997
[18] M. S. Andaloussi, M. Boukadoum, and E. M. Aboulhamid, "A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution," in The 14th International Conference on Microelectronics, 2002, pp. 123-126
[19] R. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. Balsara, "1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 220-224, 2006
[20] J. Kalisz, R. Szplet, R. Pelka, and A. Poniecki, "Single-chip interpolating time counter with 200-ps resolution and 43-s range," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 4, pp. 851-856, 1997
[21] W. Jinyuan, S. Zonghan, and I. Y. Wang, "Firmware-only implementation of time-to-digital converter (TDC) in field-programmable gate array (FPGA)," in 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), 2003, vol. 1, pp. 177-181 Vol.1
[22] S. Jian, A. Qi, and L. Shubin, "A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays," IEEE Transactions on Nuclear Science, vol. 53, no. 1, pp. 236-241, 2006
[23] M. Fishburn, L. H. Menninga, C. Favi, and E. Charbon, "A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications," IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2203-2208, 2013
[24] J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays," IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp. 446-450, 2010
[25] J. Wu and Z. Shi, "The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay," in 2008 IEEE Nuclear Science Symposium Conference Record, 2008, pp. 3440-3446
[26] Y. Chen, "A high resolution FPGA-based merged delay line TDC with nonlinearity calibration," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 2432-2435
[27] P. Chen, H. C. Cheng, A. Widodo, and W. X. Tsai, "A PVT insensitive field programmable gate array time-to-digital converter," in 2013 IEEE Nordic-Mediterranean Workshop on Time-to-Digital Converters (NoMe TDC), 2013, pp. 1-4
[28] 林智民, "以現場可程式化閘陣列實現多重計數器為基礎之時間至數位轉換電路," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2014
[29] J. Christiansen, "An integrated high resolution CMOS timing generator based on an array of delay locked loops," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 952-957, 1996
[30] P. Chen, J.T. Lan, R.T. Wang, N. M.Qui, J.C.J.S. Marquez; S. Kajihara; Y.Miyake "High-Precision PLL Delay Matrix With Overclocking and Double Data Rate for Accurate FPGA Time-to-Digital Converters," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 904-913, 2020
[31] J. Y. Won, S. I. Kwon, H. S. Yoon, G. B. Ko, J. Son, and J. S. Lee, "Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 231-242, 2016
[32] F. Baronti, L. Fanucci, D. Lunardini, R. Roncella, and R. Saletti, "A high-resolution DLL-based digital-to-time converter for DDS applications," in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234), 2002, pp. 649-653
[33] J. Chapman, "High-performance CMOS-based VLSI testers: timing control and compensation," in Proceedings International Test Conference 1992, 1992, p. 59
[34] J. A. Gasbarro and M. A. Horowitz, "Integrated pin electronics for VLSI functional testers," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 331-337, 1989
[35] T. Otsuji and N. Narumi, "A 10-ps resolution, process-insensitive timing generator IC," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1412-1417, 1989
[36] T. Otsuji and N. Narumi, "A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array," IEEE Journal of Solid-State Circuits, vol. 26, no. 5, pp. 806-811, 1991
[37] C. Branson, D. Murray, and S. Sullivan, "Integrated pin electronics for a VLSI test system," in International Test Conference 1988 Proceeding@m_New Frontiers in Testing, 1988, pp. 23-27
[38] "ON Semiconductor. (2016). MC10E195 Datasheet (11 ed.). Available:." https://www.mouser.com/datasheet/2/308/MC10E195-D-95728.pdf
[39] 嚴吉緯, "雙PLL核心之高精度數位至時間轉換器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2008
[40] P. Chen, P. Chen, J. Lai, and Y. Chen, "FPGA Vernier Digital-to-Time Converter With 1.58 ps Resolution and 59.3 Minutes Operation Range," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 6, pp. 1134-1142, 2010
[41] "Altera Corporation. (2016). Stratix IV Device Handbook. Available:." https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-iv/stratix4_handbook.pdf
[42] "“Quartus II Handbook Version14.0,”." http://www.home.agilent.com/
[43] "“Quartus II Help v14.0,”." http://quartushelp.altera.com/current/
[44] P. Chen, Y. Hsiao, Y. Chung, W. X. Tsai, and J. Lin, "A 2.5-ps Bin Size and 6.7-ps Resolution FPGA Time-to-Digital Converter Based on Delay Wrapping and Averaging," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 114-124, 2017
[45] M. Morris Mano, “Digital Design, Third Edition, ” Prentice Hall, 2002.
[46] 吳念儒, "以雙鎖相迴路與雙倍資料率實現之現場可程式化閘陣列數位至時間轉換器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2017
[47] "Altera Corporation. (2017). ALTPLL (Phase-Locked Loop) IP Core User Guide. Available:." https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altpll.pdf
[48] "“Agilent Technologies 81133A and 81134A 3.35 GHz Pulse Pattern Generators Data Sheet Version 1.5,” available from Agilent Corporation,." https://www.keysight.com/us/en/assets/7018-01085/data-sheets/5988-5549.pdf
[49] "Tektronix Inc. (2009). Digital Phosphor Oscilloscopes/Digital Serial Analyzers DPO/DSA70000 Series Data Sheet. Available:." https://download.tek.com/datasheet/4HW_19377_15_0.pdf
[50] M. Zhang, K. Yang, Z. Chai, H. Wang, Z. Ding, and W. Bao, "High-Resolution Time-to-Digital Converters Implemented on 40-, 28-, and 20-nm FPGAs," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021
[51] K. J. Choi and D. W. Jee, "Design and Calibration Techniques for a Multichannel FPGA-Based Time-to-Digital Converter in an Object Positioning System," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-9, 2021
[52] Y. Wang, Q. Cao, and C. Liu, "A Multi-Chain Merged Tapped Delay Line for High Precision Time-to-Digital Converters in FPGAs," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 1, pp. 96-100, 2018
[53] P. Kwiatkowski and R. Szplet, "Multisampling wave union time-to-digital converter," in 2020 6th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP), 2020, pp. 1-5
[54] P. Kwiatkowski and R. Szplet, "Efficient Implementation of Multiple Time Coding Lines-Based TDC in an FPGA Device," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 7353-7364, 2020
[55] T. Sui , Z. Zhao, S. Xie, Y. Xie, Y. Zhao, Q. Huang, J. Xu,and Q. Peng, "A 2.3-ps RMS Resolution Time-to-Digital Converter Implemented in a Low-Cost Cyclone V FPGA," IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 10, pp. 3647-3660, 2019
[56] P. Kwiatkowski and R. Szplet, "Digital-to-time converter with pulse train generation capability," in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2018, pp. 1-6
[57] M. Zhang, H. Wang, and Y. Liu, "Digital-to-Time Converter with 3.93 ps Resolution Implemented on FPGA Chips," IEEE Access, vol. 5, pp. 6842-6848, 2017
[58] K. Cui, X. Li, and R. Zhu, "A high-resolution programmable Vernier delay generator based on carry chains in FPGA," Review of Scientific Instruments, vol. 88, no. 6, p. 064703, 2017/06/01 2017
[59] Y. Yao, Z. Wang, H. Lu, L. Chen, and G. Jin, "Design of time interval generator based on hybrid counting method," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 832, pp. 103-107, 2016/10/01/ 2016
[60]Y. Y. Chen,J. L. Huang,T. Kuo, X. L. Huang, "Design and Implementation of an FPGA-Based Data/Timing Formatter," Journal of Electronic Testing, vol 31, 549–559 (2015)
[61] I. Vornicu, R. Carmona-Galán, and A. Rodríguez-Vázquez, "Wide range 8ps incremental resolution time interval generator based on FPGA technology," in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014, pp. 395-398
[62] P. Kwiatkowski, Z. Jachna, K. Różyc, and J. Kalisz, "Accurate and low jitter time-interval generators based on phase shifting method," Review of Scientific Instruments, vol. 83, no. 3, p. 034701, 2012/03/01 2012
[63] P.Chen, P.Y.Chen, J.S.Lai, Y.J.Chen, " FPGA Vernier Digital-to-Time Converter With 1.58 ps Resolution and 59.3 Minutes Operation Range," IEEE Transactions on Circuits and Systems, vol. 57, no. 6, 2010

無法下載圖示 全文公開日期 2028/08/09 (校內網路)
全文公開日期 2033/08/09 (校外網路)
全文公開日期 2033/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE