簡易檢索 / 詳目顯示

研究生: 劉獻文
Hsien-Wen Liu
論文名稱: 無線通訊與射頻辨識系統之天線設計及應用
Antenna Design for Wireless Communication and RFID Systems with Applications
指導教授: 楊成發
Chang-Fa Yang
口試委員: 曾昭雄
Chao-Hsiung Tseng
馬自莊
Tzyh-Ghuang Ma
周錫增
Hsi-Tseng Chou
林丁丙
Ding-Bing Lin
林育德
Yu-De Lin
陳士元
Shih-Yuan Chen
李學智
Hsueh-Jyh Li
廖文照
Wen-Jiao Liao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 141
中文關鍵詞: WiMAXUWB標籤天線讀取器天線微型化天線WLANWWANRFID
外文關鍵詞: WiMAX, UWB, tag antenna, reader antenna, miniature antenna, WLAN, WWAN, RFID
相關次數: 點閱:415下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異,現行的行動通訊裝置如:個人數位助理、智慧型手機和筆記型電腦等,均朝向輕薄短小的設計概念來發展,故配合上述裝置來設計微型化天線,乃是極為關鍵的研究議題。本論文係針對不同無線通訊系統之接收需求,來研製出六款具備不同功能之微型化天線,以內建至行動裝置中。另一方面,針對射頻辨識系統的近/遠場辨識應用,亦開發了兩款讀取器天線及兩款標籤天線。
    首先,本論文提出兩款適用於WiMAX/WLAN/UWB lower band以及UWB等系統之微型化寬頻天線,其利用曲折式佈線技術來縮減天線尺寸,並加以探討淨空區及接地面大小對於天線效能之影響,以便搭配手機模組來進行整合設計。其次,亦開發出具備帶拒特性之WiMAX/WLAN與UWB天線,其分別使用二分之一導波波長的彎曲細槽線與四分之一導波波長的金屬耦合帶線,來協助產生所需之帶拒頻段,並研究如何微調帶拒特性,以配合實際模組裝置及相關應用。另外,針對無淨空區之電路佈局需求,乃設計一款2.4 GHz曲折式槽孔PIFA印刷天線,來內建於手機裝置中。此外,為設計具備低姿態的微型化WWAN多頻帶天線,以安裝於筆記型電腦之面板上方,乃使用複合陶瓷基板來設計短路型耦合單極天線以實現之。
    另一方面,為提昇RFID近距離辨識效能,本論文設計了一款具備四組彎曲金屬帶線及耦合殘段之900 MHz迴路型近場天線,其可產生兩組反相的共振電流,以磁耦合方式來感應迴路型標籤。另外,本研究亦探討電耦合之近場辨識技術,來設計2.4 GHz射頻辨識讀取器近場天線,以解決近距離讀取多個雙偶極標籤所產生的相互耦合效應。除此之外,本論文研發了900 MHz RFID金屬標籤天線以及微型化標籤天線,來進行長距離辨識之用,其中金屬標籤天線乃以共平面波導饋入方式並搭配槽孔輻射體結構設計之,可適用於貼附金屬物品上。至於微型化標籤天線則採用捲繞式佈線技術來大幅縮減天線面積,以內建於行動裝置中,並可應用於物件互聯網。


    Due to the rapid advance in both science and technology, many portable devices such as personal digital assistant (PDA), smart phone and laptop computer are required to have a small form factor. Thus, an antenna that meets both radiation performance and space requirement is quite critical for these devices. To tackle various demands for present wireless communication systems, six different miniature antenna designs with different operation features for integration into portable devices are proposed in this dissertation. On the other hand, two reader antennas for near-filed operation as well as two tag antennas for far-field operation are also developed and investigated for RFID applications.
    By utilizing meander lines in the antenna structure, two broadband antennas are designed with small volume to be embedded inside various portable devices suitable for WiMAX/WLAN/UWB lower band and UWB systems. The effects due to empty space and ground plane variations are also analyzed. In order to eliminate the use of bandpass filters to further reduce the cost, two band-notched antenna designs are thus presented. One comes with two thin bended slots equal to half guided-wavelength and the other utilizes a coupling strip equal to quarter guided-wavelength to produce the required stopbands. Parametric studies about the stopband performance are performed as well. In order to reduce antenna size for integration into various portable devices, the fifth design is a printed planar inverted-F antenna (PIFA) with bended slot. It works for 2.4 GHz ISM band applications and does not require an empty space. A thicker substrate is employed to mitigate the mutual coupling between the antenna and the circuit board. As for the sixth design, a miniature WWAN multiband antenna based on the shorted monopole structure is developed with a low profile. This antenna can be mounted at the top edge of the display in the laptop computer, which is implemented with a Direct Bond Copper (DBC) substrate to enhance the radiation performance.
    To improve the reading performance in near-field communication (NFC) for RFID system, a loop-type antenna operating at 900 MHz has been proposed as the seventh design. It consists of four curved strips and four pairs of coupled stubs to make two opposite currents and therefore create a strong and uniform magnetic field parallel to the antenna. Thus small loop tags placed vertical toward the antenna can be read via inductive coupling. As for detecting the dipole-like tags through capacitive coupling, a 2x3 circular patch array antenna is developed for RFID 2.4 GHz operation. It can focus the radiation beam to a small spot in the near-filed zone. As a result, the severe mutual coupling among the tags and the reader antenna can be better addressed, and then the reading performance is improved as well. In addition to the reader antennas, the ninth design is a coplanar waveguide (CPW) fed metal tag antenna using a slot radiator for RFID 900 MHz applications. This tag design can be satisfactorily detected due to its high directivity when mounted on a metallic object. The tenth design is a miniaturized tag antenna for RFID 900 MHz operation. It is fabricated using helical strips and vias to miniaturize the overall antenna size. Good radiation performance is obtained with an additional miniaturized quasi-lumped matching circuit. Since both the tag antenna and its matching circuit can be easily implemented using conventional PCB processes, the proposed tag design is thus suitable for integration into portable devices as an internal RFID tag to meet internet of things (IOT).

    摘 要 I Abstract III 致 謝 V Contents VII List of Figures XI List of Tables XVII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contributions 2 1.3 Thesis Organization 4 Chapter 2 Miniature Broadband Antenna Design 7 2.1 Miniature Broadband Antenna for WLAN/WiMAX and Lower-Band UWB Applications 7 2.1.1 Introduction 7 2.1.2 Antenna Design 7 2.1.3 Experimental Results and Discussion 8 2.1.4 Summary 9 2.2 Miniature Hook-Shaped Monopole Antenna for UWB Applications 14 2.2.1 Introduction 14 2.2.2 Antenna Design 14 2.2.3 Experimental Results and Discussion 16 2.2.4 Summary 17 Chapter 3 Compact Band-Notched Antenna Design 23 3.1 Novel CPW-Fed Planar Monopole Antenna for WiMAX/WLAN Applications 23 3.1.1 Introduction 23 3.1.2 Antenna Design 24 3.1.3 Experimental Results and Discussion 25 3.1.4 Summary 27 3.2 Compact Monopole Antenna with Tunable Band-Notched Characteristic for UWB Applications 34 3.2.1 Introduction 34 3.2.2 Antenna Design 35 3.2.3 Experimental Results and Discussion 36 3.2.4 Summary 37 Chapter 4 Small-Size Antenna Design with Specific Feature 43 4.1 Miniature PIFA without Empty Space for 2.4 GHz ISM Band Applications 43 4.1.1 Introduction 43 4.1.2 Antenna Design 44 4.1.3 Experimental Results and Discussion 45 4.1.4 Summary 46 4.2 Miniature Multiband Monopole Antenna for WWAN Operation in Laptop Computer 52 4.2.1 Introduction 52 4.2.2 Antenna Design 53 4.2.3 Experimental Results and Discussion 54 4.2.4 Summary 55 Chapter 5 Near-Field RFID Reader Antenna Design 61 5.1 Novel UHF Reader Loop Antenna for Near-Field RFID Applications 61 5.1.1 Introduction 61 5.1.2 Antenna Design 62 5.1.3 Experimental Results and Discussion 63 5.1.4 Summary 64 5.2 An UHF Reader Antenna Design with a Focusing Circular Patch Array for Near-Field RFID Applications 71 5.2.1 Introduction 71 5.2.2 Array Antenna Geometry and Design Concept 72 5.2.3 Experimental Results and Performance Analysis 74 5.2.4 Summary 77 Chapter 6 RFID Tag Antenna Design 87 6.1 Novel CPW-Fed Slot Antenna for UHF RFID Metal Tag Applications 87 6.1.1 Introduction 87 6.1.2 Antenna Design 88 6.1.3 Experimental Results and Discussion 89 6.1.4 Summary 91 6.2 Novel Miniature Monopole Tag Antenna for UHF RFID Applications 96 6.2.1 Introduction 96 6.2.2 Antenna Design 97 6.2.3 Experimental Results and Discussion 98 6.2.4 Summary 100 Chapter 7 Conclusions 107 7.1 Summary 107 7.2 Future Works 109 References 111 Author Resume 117 Publication List 118

    [1] G.-L. Xin, and J.-P. Xu, “Wideband miniature G-shaped antenna for dual-band WLAN applications,” Electron. Lett., vol. 43, no. 24, pp. 1330-1332, Nov. 2007.
    [2] C.-H. See, R. A. Abd-Alhameed, D. Zhou, and P. S. Excell, “Dual-frequency Planar Inverted F-L-Antenna for WLAN and short range communication sys- tems,” IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3318-3320, Oct. 2008.
    [3] D. D. Krishna, M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, “CPW-fed koch fractal slot antenna for WLAN/WiMAX applications,” IEEE Antenna Wireless Propag. Lett., vol. 7, pp. 389-392, July 2008.
    [4] Y.-T. Liu, “Stubby monopole antenna for UMTS/WLAN dual-mode mobile phone,” Electron. Lett., vol. 43, no. 5, pp. 15-16, Mar. 2007.
    [5] Y. Zhang, W. Hong, C. Yu, Z.-Q. Kuai, Y.-D. Don, and J.-Y. Zhou, “Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 3063-3068, Sep. 2008.
    [6] T.-G. Ma, R.-C. Hua, and C.-F. Chou, “Design of a multiresonator loaded band- rejected ultrawideband planar monopole antenna with controllable notched band- width,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2875-2883, Sep. 2008.
    [7] M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, “Compact linear tapered slot antenna for UWB applications,” Electron. Lett., vol. 44, no. 20, pp. 1174-1175, Sep. 2008.
    [8] J. R. Verbiest, and G. A. E. Vandenbosch, “Low-cost small-size tapered slot antenna for lower band UWB applications,” Electron. Lett., vol. 42, no. 12, pp. 670-671, Jun. 2006.
    [9] J.-X. Ge, and W. Yanagisawa, “A novel compact ultrawideband antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 318-323, Feb. 2009.
    [10] Z.-A. Zheng, and Q.-X. Chu, “CPW-fed ultra-wideband antenna with compact size,” Electron. Lett., vol. 45, no. 12, pp. 593-594, Jun. 2009.
    [11] Z.-N. Chen, T.-S. See, and X. Qing, “Small printed ultrawideband antenna with reduced ground plane effect,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 383-388, Feb. 2007.
    [12] Y.-F. Liu, K.-L. Lau, Q. Xue, and C.-H. Chen, “Experimental studies of printed wide-slot antenna for wide-band applications,” IEEE Antennas Wireless Propag. Lett., vol. 3, no. 1, pp. 273-275, 2004.
    [13] J.-Y. Jan, and J.-W. Su, “Bandwidth enhancement of a printed wide-slot antenna with a rotated slot,” IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 2111-2114, Jun. 2005.
    [14] W.-S. Chen, and K.-Y. Ku, “Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propag., vol. 56, no. 4, pp. 1163-1169, Apr. 2008.
    [15] S. Chaimool, and K.-L. Chung, “CPW-fed mirrored-L monopole antenna with distinct triple bands for WiFi and WiMAX applications,” Electron. Lett., vol. 45, no. 18, pp. 928-929, Aug. 2009.
    [16] K. G. Thomas, and M. Sreenivasan, “Compact triple band antenna for WLAN/ WiMAX applications,” Electron. Lett., vol. 45, no. 16, pp. 811-813, 2009.
    [17] T.-H. Kim, and D.-C. Park, “Compact dual-band antenna with double L-slits for WLAN operations,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 249-252, 2005.
    [18] C.-M. Wu, C.-N. Chiu, and C.-K. Hsu, “A new nonuniform meandered and fork-type grounded antenna for triple-band WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 346-348, 2006.
    [19] C.-Y. Pan, T.-S. Horng, W.-S. Chen, and C.-H. Huang, “Dual wideband printed monopole antenna for WLAN/WiMAX applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 149-151, 2007.
    [20] M. J. Ammanna, “The pentagonal planar monopole for digital mobile terminals; bandwidth considerations and modelling,” in Proc. International Conference on Antennas and Propagation, 2001, vol. 1, pp. 82-85.
    [21] R. Zaker, C. Ghobadi, and J. Nourinia, “Bandwidth enhancement of novel compact single and dual band-notched printed monopole antenna with a pair of L-shaped slots,” IEEE Trans. Antennas Propag., vol. 57, no. 12, pp. 3978-3983, Dec. 2009.
    [22] H.-J. Zhou, B.-H. Sun, Q.-Z. Liu, and J.-Y. Deng, “Implementation and investigation of U-shaped aperture UWB antenna with dual band-notched characteristics,” Electron. Lett., vol. 44, no. 24, pp. 1387-1388, Nov. 2008.
    [23] J.-W. Jang, and H.-Y. Hwang, “An improved band-rejection UWB antenna with resonant patches and a slot,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 299-302, 2009.
    [24] T. Dissanayake, and K. P. Esselle, “Prediction of the notch frequency of slot loaded printed UWB antennas,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3320-3325, Nov. 2007.
    [25] M. Ojaroudi, C. Ghobadi, and J. Nourinia, “Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 728-731, 2009.
    [26] J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, “Compact printed ultra- wideband monopole antenna with dual band-notched characteristics,” Electron. Lett., vol. 44, no. 12, pp. 710-711, Jun. 2008.
    [27] T.-N. Chang, and M.-C. Wu, “Band-notched design for UWB antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 636-640, 2008.
    [28] Y.-J. Cho, Y.-S. Shin, and S.-O. Park, “Internal PIFA for 2.4/5 GHz WLAN applications,” Electron. Lett., vol. 42, no. 1, pp. 8-10, 2006.
    [29] Y.-C. Yu, and J.-H. Tarng, “A novel modified multiband planar inverted-F antenna,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 189-192, 2009.
    [30] C.-Y. Chiu, K.-M. Shum, and C.-H. Chan, “A tunable via-patch loaded PIFA with size reduction,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 65-71, 2007.
    [31] H.-T. Chattha, Y. Huang, and Y. Lu, “PIFA bandwidth enhancement by changing the widths of feed and shorting plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp.637-640, 2009.
    [32] M. Komulainen, M. Berg, H. Jantunen, E. T. Salonen, and C. Free, “A frequency tuning method for a planar inverted-F antenna,” IEEE Trans. Antennas Propag., vol. 56, no. 4, pp. 944-950, 2008.
    [33] K.-L. Wong, and L.-C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, no .2, pp. 324-330, 2009.
    [34] F.-H. Chu, and K.-L. Wong, “Simple folded monopole slot antenna for penta- band clamshell mobile phone application,” IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3680-3684, 2009.
    [35] M. J. Park, H. Rhyu, N. Kim, J. Byun, T. Kim, K. Jung, B. Lee, D. Kim, and F. J. Harackiewicz, “Multi-band hybrid antenna for ultra-thin mobile phone applicat- ions,” Electron. Lett., vol. 45, no. 15, pp. 773-774, 2009.
    [36] Z.-H. Hu, C. T. P. Song, J. Kelly, P. S. Hall, and P. Gardner, “Wide tunable dual- band reconfigurable antenna,” Electron. Lett., vol. 45, no. 22, pp. 1109-1110, 2009.
    [37] Y.-W. Chang, and K.-L. Wong, “Compact multiband folded loop chip antenna for small-size mobile phone,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3797-3803, 2008.
    [38] P. V. Nikitin, K. V. S. Rao, and S. Lazar, “An overview of near field UHF RFID,” in IEEE RFID International Conference, Mar. 2007, pp. 167-174.
    [39] X.-S. Chen, F. Lu, and T.-T. Ye, “Mutual coupling of stacked UHF RFID antennas in NFC applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [40] Y.-S. Chen, and S.-Y. Chen, “Analysis of antenna coupling in near-field RFID systems,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [41] Chuyong Lee, Chihyun Cho, Jeongki Ryoo, Ikmo Park, and Hosung Choo, “Planar near-field RFID reader antenna using opposite-directed currents,” in IEEE iWAT Int. Workshop, Mar. 2009, pp. 1-4.
    [42] X. Qing, C. K. Goh, and Z.-N. Chen, “Segmented loop antenna for UHF near- field RFID applications,” Electron. Lett., vol. 45, no. 17, pp. 872-873, Aug. 2009.
    [43] K. Finkenzeller, RFID Handbook: Radio-frequency Identification Fundamentals and Applications, 2nd ed.: Wiley, 2004.
    [44] J. Landt, “The history of RFID,” IEEE Potentials, vol. 24, no. 4, Nov. 2005, pp. 8-11.
    [45] H.-W. Liu, C.-F. Yang, C.-H. Weng, H.-L. Kuo, K.-H. Wu, and Y.-S. Lin, “An UHF reader antenna design for near-field RFID applications,” in IEEE Asia Pacific Microwave Conference, Dec. 2009, pp. 2394-2397.
    [46] H.-W. Liu, K.-H. Wu, and C.-F. Yang, “UHF reader loop antenna for near-field RFID applications,” Electron. Lett., vol. 46, no. 1, pp. 10-11, Jan. 2010.
    [47] S. K. Sharma, and L. Shafai, “Beam focusing properties of circular monopole array antenna on a finite ground plane,” IEEE Trans. Antenna Propag., vol. 53, no. 10, pp. 3406-3409, Oct. 2005.
    [48] M. Bogosanovic, and A. G. Williamson, “Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection,” IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2186-2195, Dec. 2007.
    [49] R. Siragusa, P. Lemaitre-Auger, and S. Tedjini, “Near field focusing circular microstrip antenna array for RFID applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [50] W.-K. Choi, J.-S. Kim, J.-H. Bae, G.-Y. Choi, and J.-S. Chae, “Near-field antenna for RFID smart shelf in UHF,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [51] V. Chawla, and D.-S. Ha, “An overview of passive RFID,” IEEE Comm. Mag., vol. 45, no. 9, pp. 11-17, Sep. 2007.
    [52] K. V. S. Rao, P. V. Nikitin, and S. F. Lam, “Antenna design for UHF RFID tags: a review and a practical application,” IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 3870-3876, 2005.
    [53] Y. Choi, U. Kim, and J. Choi, “Design of a dipole tag antenna enclosed by a short-stub for UHF RFID application,” in IEEE AP-S Int. Symp. Dig., Jul. 2008, pp. 21-24.
    [54] J. Ahn, H. Jang, H. Moon, J.-W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antenna Wireless Propag. Lett., vol. 6, pp. 518-520, 2007.
    [55] H.-W. Son, and C.-S. Pyo, “Design of RFID tag antennas using an inductively coupled feed,” Electron. Lett., vol. 41, no. 18, pp. 994-996, 2005.
    [56] K.-S. Leong, M.-L. Ng, and P.-H. Cole, “Miniaturization of dual frequency RFID antenna with high frequency ratio,” in IEEE AP-S Int. Symp. Dig., Jun. 2007, pp. 5475-5478.
    [57] S.-L. Chen, K.-H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett., vol. 45, no. 18, pp. 923-924, 2009.
    [58] H. Kwon, and B. Lee, “Compact slotted planar inverted-F RFID tag mountable on metallic objects,” Electron. Lett., vol. 41, no. 24, pp. 1308-1310, 2005.
    [59] J.-S. Kim, W. Choi, and G.-Y. Choi, “UHF RFID tag antenna using two PIFAs embedded in metallic objects,” Electron. Lett., vol. 44, no. 20, pp. 1181-1182, 2008.
    [60] S.-L. Chen, and K.-H. Lin, “A slim RFID tag antenna design for metallic object applications,” IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 729-732, 2008.
    [61] S.-L. Chen, “A miniature RFID tag antenna design for metallic objects applicat- ion,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 1043-1045, 2009.

    QR CODE