簡易檢索 / 詳目顯示

研究生: 曾清城
Ching-cheng Tseng
論文名稱: 2.4GHz 射頻前端接收電路之設計
Design of a 2.4 GHz RF Front End Receiver
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 徐敬文
none
陳國龍
none
魏炯權
none
黃正亮
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 主動濾波器
外文關鍵詞: active filter
相關次數: 點閱:225下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計一個應用於2.4GHz 頻段之射頻前端接收電路,此射頻前端接收電路包含了一組低雜訊放大器及主動式濾波器,因低雜訊放大器位在射頻前端電路的第一級對系統功能有著明顯的影響,論文中將討論電晶體之S參數的量測,低雜訊及級間匹配電路的設計為重點,此低雜訊放大器將工作在中心頻率為2.45 GHz,頻寬100MHz,增益38dB及2dB雜訊指數,並使用微代線及離散元件進行阻抗匹配及實作。
傳統上濾波器均是使用被動元件,例如傳輸線、導波管、電感、電容等離散元件來實現濾波器的設計,現今由於MMIC單石微波積體電路的技術不斷演進,使得主動式濾波器逐漸能夠取代被動式濾波器,相較於被動式濾波器,主動式濾波器有著體積小、成本低、高Q值等優點且微波帶主動式濾波器是用MMIC技術設計所以可以輕易的與MMIC整合縮小濾波器尺寸。
本論文的重點會集中於2.45 GHz主動式濾波器之設計包含理論推導及實作,論文中將討論如何利用負電阻補償電路設計主動式濾波器及傳統被動式濾波器之設計方法並進行模擬分析與比較。實作部分包含2.45GHz主動式濾波器及一組低雜訊放大器,最後並將這兩個電路串接起來量測驗證射頻前端接收電路之整體表現。


This thesis, presents a 2.4 GHz Front-End Receiver. This front-End Receiver includes a two stage LNA (low noise amplifiers) and a active filter. Since the LNA is the first stage in the circuit block in a receiver chain, its noise performance dominates the system sensitivity. The primary objective of this work is how to capture transistor’s S-parameter, achieve low noise figure and multistage matching method. This low noise amplifier (LNA) is for the frequency from 2.4 GHz to 2.5 GHz, using Hetero-Junction FET with fT of 12 GHz. The matching circuits were implemented with microstrips and discrete limped elements. In the frequency band of operation, the achieved noise figure (NF) is with in 0.8 dB from the minimum NF of a single transistor, the power gain is 38dB, flat within 1dB, and maximum input VSWR is lower than 3.
Traditionally, such filters have been implemented as passive network of wave guide, transmission line, or discrete limped elements. However, due to the improvement in monolithic microwave integrated circuit (MMIC) process technology, more and more systems utilize the active filter instead of the passive filter. Compared to the passive filter, the active filter its’ advantageous in small size, compatibility with other ICs and low loss in narrow bandwidth designs.
This thesis will focus on the 2.4 GHz active bandpass filter design, including the theory and implementation. Besides this, we will also discuss about how to implement active bandpass filter using negative resistance compensation technique, as well as tradition passive filter. The active bandpass filter and two stage low noise amplifier will be fabricated and cascades to measure and to verify the performance of RF front end receiver.

Chapter 1 Introduction………………………………………………….1 1.1 Motivation……………………………………………..1 1.2 Receiver Front End Architecture Overview…………..2 1.3 Contribution…………………………………………...3 1.4 Outline of the Thesis…………………………………..4 Chapter 2 Front End Receiver………………………………………….5 2.1 Introduction of RF Front End Receiver……………….5 2.1.1 Introduction of Active Filters…………………..5 2.1.2 Introduction of Low Noise Amplifier…………..7 2.2 Basic Concept and Theory of Filters………………….7 2.2.1 Transfer Functions……………………………...7 2.2.2 Butterworth (Maximally Flat) Response……...10 2.2.3 Chebyshev Response………………………….12 2.2.4 Elliptic Function Response……………………14 2.3 Resonant Circuits…………………………………….17 2.3.1 Parallel Resonant Circuit……………………...17 2.3.2 Coupled Resonator Circuits…………………...19 2.3.3 General Theory of Couplings…………………20 2.4 MMIC Passive and Active Components Model……..25 2.4.1 Spiral Inductor Model…………………………26 2.4.2 Ribbon Inductor Model………………………..27 2.4.3 Negative Resistance Generator Circuit and Model……………………………………………………....28 2.5 Filter Design Using Negative Resistance Generator...30 2.6 LNA Introduction……………………………………36 2.6.1 Power Gain……………………………………34 2.6.2 Noise Figure…………………………………..39 2.6.3 Linearity………………………………………42 2.6.3.1 Gain Compression (1-dB point)………42 2.6.3.2 Third Intercept Point IP3……………...43 Chapter 3 Design of Active Bandpass Filter………………………….45 3.1 Comparison Between Passive and Active Filter……..45 3.2 Active Filter Theory and Techniques………………..47 3.3 Active Band-pass Filter Design Procedures…………50 3.4 Negative Resistance Generator Circuit Design………55 3.5 Simulation and Measurements Results………………59 Chapter 4 Low Noise Amplifier Design…...........................................68 4.1 Design Consideration of LNA……………………….68 4.1.1 Define LNA spec and design goals…………68 4.1.2 Select Proper Transistor……………………..69 4.1.3 DC Analysis-Bias……………………………72 4.1.4 Transistor S-parameter Measurement……….74 4.2 Matching Networks…………………………………..76 4.2.1 Matching Circuit for Two-Stage LNA………...77 4.3 Simulation and Measurements Result………………..79 4.3.1 LNA Stage-1 Design……………………………79 4.3.2 Test Equipments………………………………...86 4.3.3 Measurement Results…………………………...86 4.3.4 Summary and Conclusion………………………93 Chapter 5 Cascade of Active Bandpass Filter and Low Noise Amplifier……………………………………………….......95 5.1 Whole Circuit………………………………………..95 5.2 Simulation and Measurement Result………………..96 5.2.1 Comparison Between Simulation and Measurement……………………………………………….97 5.3 Discussion……………………………………………99 Chapter 6 Conclusion………………………………………………..100

[1] Stephen E. Sussman-fort, “design concepts for microwave GaAs FET active filter,” IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 9, September 1989.

[2] ADAMS, D.K. and HO, R.Y.C., “Active filter for UHF and microwave frequencies,” IEEE Transactions on Microwave Theory and Techniques, MTT-17(9) , pp. 662-670, 1969.

[3] SYNDER R.V. and Bozarth, D.L., “Analysis and design of a microwave transistor active filter,” IEEE Transactions on microwave Theory and Techniques, MTT-18(1), pp.1-9, 1970.

[4] B. Hopf, I. Wolff, M. Guglielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits, ” IEEE MTT-S International, Vol. 2, pp. 1183-1185, May 1994.

[5] Ulan Karacaoglu, Ian D. Robertson, “MMIC active bandpass filters using varactor-tuned negative resistance elements,” IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, Dec. 1995.

[6] Yong-Ho Cho, Song-Cheol Hong, Young-Se Kwon, “A low-power monolithic GaAs FET based on negative resistance technique,” IEEE Microwave and Guided Wave Letters, Vol. 8, issue 4, pp. 161-163, April 1998.

[7] M. Delmond, L. Billonnet, B. Jarry, P. Guillon, “High-order monolithic active recursive filter based upon multicellular approach,” IEEE MTT-S International, Vol. 2, pp. 17-21, June 1996.

[8] J. Tissier, W. Mouzannar, L. Billonnet, B. Jarry, P. Guillon, “Novel alternative design methods based upon combined amplification, matching and filtering approaches in MMIC technology,” Microwave Symposium Digest, Vol. 1, pp. 409-412, 2000.

[9] Y. Sen, O. Apaydin, N. Yildirim, “MMIC active filter with negative resistance,” Electrotechnical Conference, Vol. 3, pp. 1415-1418, May 1996.

[10] Hann-Haur Wu, Yi-Jen Chan, “Tunable high-Q MMIC active filter by negative resistance compensation,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Digest, pp. 252-255, October 1997.

[11] Masaharo Ito, Kenichi Maruhashi, Shuya kishimoto, Keichi Ohata, “A 60 GHz-band coplanar MMIC active filter,” IEEE MTT-S International, vol. 3, pp. 1751-1754, June 2003.

[12] Arthur B. Williams and Fred J. Taylor, “Electronic Filter Design Handbook,” Second edition, McGRAW-Hill Publishing Company, 1967

[13] Guillermo Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” Second Edition, Prentice Hall, 1997.

[14] Behzad Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998.

[15] S. E. Sussman-Fort, “Matchnet: Microwave Matching Network Synthesis,” Aretech House, 1991.

[16] P. A. Rizzi, “Microwave Engineering-Passive Circuits,” Prentice Hall, 1988.

[17] I. Bahl and P. Bhartia, “Microwave Solid State Circuit Design,” Wiley Interscience, 1988.

[18] L. Besser, “Microwave Circuit Design,”Electronic Engineering,” October 1980.

[19] David M.Pozar, “Microwave Engineering,” Second Edition, Wiley, 1998.

[20] George D.Vendelin,Amthony M.Pavio,Ulrich L.Rohde “Microwave Circuit Design Using Linear and Nonlinear Techniques,”
Willey, 1990.

[21] Stephen E. Sussman-fort, “design concepts for microwave GaAs FET active filter,” IEEE Transactions on Microwave Theory and Techniques, Vol. 37, no. 9, September 1989.

[22] Aatre, Vasudev K. “Network Theory and Filter Design,” New York: John Wiley & Sons, 1986.

[23] G. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks,and Coupling Structures, Artech House, Norwood, MA, 1980.

[24] Y. Vourc’h, G. Auger, H. J. Chaplopka, and D. Jedamzik, “Architecture of future basestations using high temperature superconductors,” ACTS Mobile Summit, Aalbourg, Demank,
September 1997, pp. 802–807.

QR CODE